Issue 2, November 2001

El

MICRO FOocus
APS FOR z0S

USER'S GUIDE

Copyright © 2002 Micro Focus International Limited.
All rights reserved.

Micro Focus International Limited has made every effort to ensure that this book is
correct and accurate, but reserves the right to make changes without notice at its sole
discretion at any time. The software described in this document is supplied under a
license and may be used or copied only in accordance with the terms of such license,
and in particular any warranty of fitness of Micro Focus software products for any
particular purpose is expressly excluded and in no event will Micro Focus be liable for
any consequential loss.

Animator®, COBOL Workbench®, EnterpriseLink®, Mainframe Express®,

Micro Focus®, Net Express®, REQL® and Revolve® are registered trademarks, and
AAI™, Analyzer™, Application to Application Interface™, AddPack™, AppTrack™,
AssetMiner™, CCI™, DataConnect™, Dialog System™, EuroSmart™, FixPack™,
LEVEL Il COBOL™, License Management Facility™, License Server™,

Mainframe Access™, Mainframe Manager™, Micro Focus COBOL™, Object COBOL™,
OpenESQL™, Personal COBOL™, Professional COBOL™, Server Express™,
SmartFind™, SmartFind Plus™, SmartFix™, SourceConnect™, Toolbox™, WebSync™,
and Xilerator™ are trademarks of Micro Focus International Limited. All other
trademarks are the property of their respective owners.

No part of this publication, with the exception of the software product user
documentation contained on a CD-ROM, may be copied, photocopied, reproduced,
transmitted, transcribed, or reduced to any electronic medium or machine-readable
form without prior written consent of Micro Focus International Limited.

Licensees may duplicate the software product user documentation contained on a CD-
ROM, but only to the extent necessary to support the users authorized access to the
software under the license agreement. Any reproduction of the documentation,
regardless of whether the documentation is reproduced in whole or in part, must be
accompanied by this copyright statement in its entirety, without modification.

U.S. GOVERNMENT RESTRICTED RIGHTS. It is acknowledged that the Software and the
Documentation were developed at private expense, that no part is in the public
domain, and that the Software and Documentation are Commercial Computer
Software provided with RESTRICTED RIGHTS under Federal Acquisition Regulations
and agency supplements to them. Use, duplication or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of The
Rights in Technical Data and Computer Software clause at DFAR 252.227-7013 et. seq.
or subparagraphs (c)(1) and (2) of the Commercial Computer Software Restricted
Rights at FAR 52.227-19, as applicable. Contractor is Micro Focus, 9420 Key West
Avenue, Rockville, Maryland 20850. Rights are reserved under copyright laws of the
United States with respect to unpublished portions of the Software.

20020219093933

Table of Contents

1 Introduction.............iiiiiiinn. 9
Introduction to APS 9

A Scenario forUsing APS 1

The APSTool Set. e 13

2 Paint the Application Definition................ 15
Application Painter Concepts 15
Painting an Application Definition.......................... 17
Special Considerations. i i 22
Defining Application Components 22

3 Import Database Definitions 25
Importer Concepts 25
Importing IMS PSBsand DBDsot 26
Supplementing or Overriding DDI Statements 29
Importing SQLDB2 Objectsot 31
Generating a DB2/DBP Object Import Report 34

Special Considerations. 35

Importing VSAM Files. 35
Importing IDMS Database Definitions 37

4 Paint CharacterScreens. 39
Screen Painter Concepts. i i 39
Field Attributes 41

Field Eits.o e 42

Global DataElements i i 43
Scenario Prototype. 44
Target-Specific Parameters 45

User’s Guide

User’s Guide

Painting a Screen. e 47

Special Considerations i 58
Painting Field Edits 60
Creating and Running a Screen Flow Prototype 65
Modifying Screen Layouts.t 71

DeleteaFieldorRow 71

Modify a Repeated Record Block......................... 71

Move or Copy aFieldorRow. oL, 72

Track Multiple Field Changes 73
Setting Parameters for Generation 74
Importing BMS Mapsetso 80
Define Processing Logic 81
Concepts of ProcessingLogic, 81
Predefined Program Functions. 82

Specifying Predefined Program Functions. 87

Special Considerations, 94
Custom Program Functions., 94

Defining Custom Program Functions. 95
Mapping Screens to Database Fields 101

Special Considerations i 102
Control Points e 103

Inserting Logic at Control Points 106
Define Database Accessccvvvunn.. 113
Concepts of APS Database Access., 113
Defining SQL Database Calls., 118

Defining BasicSQL Calls 119

DefiningJoinCalls. i 130

DefiningUnionCalls. 132

Special Considerations 136
Defining IMS Database Calls. 136

Special Considerations i 141
Defining VSAM Database Calls. 141

Special Considerations i 145

Defining IDMS Database Calls. 146

Special Considerations. i 151
Connecting and Disconnecting Records 151
Customized Database Calls 152
Nested LOOPS . ..o v vt it e e 153
Functions with Multiple Database Actions. 156
Custom Logic at Database Call Control Points. 157
Status Codes and Error Messagesoouiiiunnn... 161
Multiple-Field Key Qualification. 162
Database Calls as Custom Program Functions 164
Savekey and Commarea Storage. 166
Defining Savekey Storage and a Commarea 168
Special Considerations. 169
Generate the Application. 171
Concepts of Generation.t 171
Setting OptioNns.t e 172
Setting Project and Group Options. 173
Setting Generator Options 174
Setting Precompiler Options. 176
Setting SQL Bind and Translate Options. 181
SettingJob Control Cards 184
Setting IDMS Optionst 184
Resetting Profile Variables 186
Generating Applications 186
Special Considerations. i 187
Executing Applications. 188
Access the execution facilities. 189
CreateUserHelp 191
User Help Facility Concepts 191
Defining the Help Database 192
Defining an IMS Help Database 193
Defining a VSAM Help Database 194
Defining SQL Help Databases 195
Special Considerations. 195

User’s Guide

10

1"

User’s Guide

Working with the Help Source File. 196

Creating the Help Source File.o i 198
Special Consideration............. 203
Generating the User Help Application........................ 203
Generating User Help in CICS/ISPF Environments 204
Generating User Help in an IMS Environment 205
Special Considerations 206
Loading the Help Database 206
Loading Help Source for VSAM 206
Loading Help Source forIMS 208
Special Considerations, 208
Customizing the User Help Application....................... 209
Maintaining the Help Database 210

Define Online Programs with

ProgramPainter............... ... i, 213
Concepts of the Program Painter............................ 213
Creating Online Programs in the Program Painter.............. 216

Special Considerations i 228
Create BatchPrograms 229
Concepts of APS Batch Programming 229
Creating Batch Programs 232

Special Consideration i 244
Sample Batch Program i 244

Create Reports with Report

Writer e 251
Concepts of APS Report Writing. 251
Painting Report Mock-Ups i 259
Special Considerations i 260
Creating Report Programs i 261
Special Considerations i, 272

12

Generate Multiple SUM or SOURCE Statements 274

Suffixed Data Elements......... 275
Array ltems e 276
Mapping Considerationst 277
Sample Program 279
Using the APS/ENDEVOR Interface 287
APS/ENDEVOR OVEIVIEWttt it e 287
Using APS/ENDEVOR e 290
Accessing APS/ENDEVOR Options.t 290
Specifying a Projectand Group. 291
Checkinga ComponentIn....... 291
CheckingaRevisionOut, 293
Running the View DifferencesReport 295
Running the View Print Reports 295

User’s Guide

User’s Guide

1 Introduction

This chapter contains the following sections:
® Introduction to APS

® A Scenario for Using APS

® The APS Tool Set

Introduction to APS

Generate MIS
applications
automatically

Improve
application
quality

APS for z/OS is a full-function application generator that automates the
development and redevelopment of the MIS applications that support
your business. With APS you can build simple or complex applications
for a variety of IBM SAA production environments. You can generate
online and batch applications without manual coding.

APS improves both the quality of your applications and your efficiency
in developing them. Quality improves because you focus on the end
user’s functional requirements, and not the application’s physical
implementation. As a result, applications generated with APS are more
likely to meet user expectations without extensive modifications.

APS lets developers focus on user needs by working in a variety of
development cycles. For example, if your approach is:

® Rapid Application Development (RAD), you use APS to prototype
your application user interface and its technical environment. You
generate a working application directly from the prototype,
without wasting any steps.

® \Waterfall, you develop requirements, specifications, and designs in
a front-end CASE tool such as Excelerator. In this analysis- and
design-driven development, you then transfer that information to
APS, where it becomes the basis of the design you use to generate
the working application.

User’s Guide

10

Chapter 1 Introduction

Improve
development
productivity

Build your
knowledge base
into APS

User’s Guide

® Hybrid, you can start either with prototypes or high-level
specifications, and move freely between the two approaches as you
refine your models. APS gives you the flexibility to adapt your
lifecycle approach to particular project requirements.

® Redevelopment, you can capture high-level information about your
existing applications, and then forward engineer applications using
APS. APS makes it easy to maintain or enhance applications by
reusing design information that defines application screens,
databases, and other features.

Productivity improves because you can generate a complete working
application without first becoming an expert in IMS, CICS, ISPF, SQL, or
any other environment that APS supports. Because APS lets you focus on
high-level requirements and specifications, novice developers can
quickly generate simple designs with minimal training, and soon build
incrementally to complex applications.

APS also encourages developers to share and reuse design modules. It
lets you store all application design information in one central location
on a network or mainframe, so that multiple users can access that
information concurrently. As a result, your application designs always
reflect the entire team’s current work, and it is easy to share data.

APS lets developers share design components that leverage the
knowledge and experience of your most senior people. Expert COBOL
developers can customize APS so that it supports your organization’s
requirements for such features as user interface, report writing, and
naming conventions. When these senior APS users define in-house
standards or solve complex problems, you can incorporate their work
into the dynamic APS rules base, where it is available to all users at your
site.

Because APS lets you work from high-level designs, you can easily
retarget APS applications for multiple environments. You simply specify
the new target, and regenerate the application, using the same
programs, screens, and other application components. APS lets you use
your existing database subschemas, tables, and files in the new
applications you generate.

A Scenario for Using APS

A Scenario for Using APS

Start
development with
tasks you prefer

Build applications
from high-level
specifications

Generate
applications for
multiple targets

Prototype the
application’s look
and feel

APS lets you work in whatever sequence you choose. For example, you
can define the user interface before you think about the program logic.
Or you can first define the global data that all programs must use.
Whether you decide to work top down, bottom up, or middle out, APS
lets you proceed from the step you just completed to the one you want
to do next. And, if you are maintaining or redeveloping existing
applications, APS lets you focus on only those components that must
change.

It's often best to begin by defining your application’s runtime or target
environment. When you select an environment, APS handles the
necessary implementation details when it generates the application.
APS for z/0S supports the following targets:

DB/2
IMS DB
VSAM
IDMS

Database

clcs

IMS DC

ISPF

ISPF Dialog
MVS (batch)

Data Communication

If your application must run in several target environments, you can
easily specify it to do so. For example, you can generate an application
so that it can access more than one kind of database. In each case, APS
generates code that runs in the environments you specify in your high-
level application design.

Whenever you are ready, you import into APS the subschemas or tables
for your existing databases. Your APS applications can then access these
existing databases--first for prototype testing within APS, and then for

running the final application.

You can next prototype the look and feel of an application, so that end
users can review it early in the design process. Then paint the screens
that support the user interface you select.

User’s Guide

1

12

Chapter 1 Introduction

Paint applications

Specify
application logic

Automatically
generate a
working
application

Test run the
application

User’s Guide

APS lets you paint menu and data entry screens that include data entry
and text fields. You can also include message fields that let the
application communicate errors.

At this stage of prototyping, you and your end users run the screens to
ensure that the application user interface meets end user expectations.
You can enter data into data entry fields to ensure that they capture all
of the required information. You can test various display sequences of
screens to ensure that the screens support an intuitive work flow.
Because it is so easy to create, run, and change these prototypes, you
can work closely with end users to refine this aspect of the application
before you move on to design the underlying details of the application.

APS also simplifies the task of defining an application’s processing logic.
You can generate online applications from high-level designs using the
default logic that APS produces, or you can tailor the logic to your
particular requirements. For example, you can tailor the way that APS
processes database calls, error routines, or other program functions.

You create batch applications using whatever combination of
specification language, user-defined macros, or COBOL/2 syntax that
you prefer. You can combine online and batch programs as you like
within a single application.

When you generate an application, it is ready to install and set up to
run in your production environment. Generation produces consistent,
high-quality code without run-time modules.

Once you generate an application, you can test run your work within
APS using the APS ISPF Prototype Execution facility. This facility
emulates the basic functions of the mainframe CICS or IMS DC
environments, letting you test the data communication and database
functions of your programs. Doing so allows you to find features that
do not meet expectations, and then modify and retest those features
without first setting up the complete target environment that the
application will ultimately run in.

Using this facility, you can test out your application’s program
navigation and flow--for example, sending screens, passing control
from one program to another, and terminating programs. If you have
imported your database definitions, you can test the prototype using
test data in your actual SQL or VSAM (but not IMS) database; otherwise
you can test the processing logic using data that you enter into screens
but do not store.

The APS Tool Set

The APS Tool Set

Basic APS painters
and facilities

Advanced APS
painters and
facilities

The basic APS toolset lets you generate applications from high-level
specifications. The APS tools that support this work are as follows:

Application Painter lets you specify the target environment. You
also use the Application Painter to name the components of the
working application, such as its programs; screens or report
mockups; and data structures, and to define the relationships
among them.

Database Importers let you use existing databases as part of any APS
application.

Screen Editor lets you paint screens containing global or local data
elements.

Scenario Painter lets you prototype the flow and behavior of
screens.

Online Express lets you define all program logic by using predefined
teleprocessing and database function codes, mapping record fields
to screens, defining and qualifying database calls, and adding your
own program functions to support specialized requirements.

Specification Painter lets you extend Online Express applications
with customized processing logic that supports your coding
practices.

Program Painter is an alternative to Online Express, and lets you
create batch and online applications using COBOL Il and high-level
APS constructs such as database calls, data communication calls, and
Report Writer constructs.

Generators let you create an executable COBOL application from
your high-level APS specification.

Documentation Facility lets you produce reports about your
applications.

If you need to customize your applications to reflect specific in-house
coding practices, APS also provides a set of advanced facilities that give
you this flexibility. These tools are as follows:

Data Structure Painter lets you define data elements you can reuse
in applications.

User’s Guide

13

14

Chapter 1 Introduction

User’s Guide

Data Element Facility lets APS Administrators set and enforce in-
house standards by creating and maintaining global data elements
that all developers use in their applications.

User Help Facility lets you create online help systems for your
applications.

Customization Facility lets you extend APS applications using macros
you define to support your coding practices.

APS/ENDEVOR Interface lets you link to LEGENT's ENDEVOR
software management product to manage the different versions of
your application components.

15

2 Paint the Application
Definition

This chapter contains the following sections:
® Application Painter Concepts
® Painting an Application Definition

® Defining Application Components

Application Painter Concepts

List application
components

The APS Application Painter lets you define your application by listing
all of its components in a matrix. The matrix provides both an overview
of the entire application, and easy access to the other APS painters and
facilities where you define or import the application components.

An application can include the following components:
® A combination of online and batch programs

® User interface screens

® Report mock-ups

® Data structures

® Subschemas and PSBs

® User-defined macros

® Subroutines, called global program stubs

These components can define an application of whatever scope you
require. For example, one application might be an entire Order
Inventory system, while another might be an Order Status database
inquiry.

User’s Guide

16

Chapter 2 Paint the Application Definition

List components
as they relate to
each other

Define and
generate
components

Target your
database and
data
communications
environment

User’s Guide

You list application components in the Application Painter screen so
that the matrix indicates their relationships. To do so, you type a
program name and the names of all the components that belong with
the program on one row. If you want multiple programs to share
components such as subschemas, data structures, or user-defined
macros, you type these component names on one or more rows above
your first program. Shared components are known as global
components; all programs in your application can reference them.

Figure 2-1. A Sample Application Definition

COMMAND ===> SCROLL ===> E£SA
DL ===> 18PF AUTHOR ===> MKIAEA
DB === USAK SCREEN SIZE ===> luD2
-LIHE- PROGRAMS ~ SCREENS 10 REPORTS DATA STR TY SBSC/PSB USERMACS L
gpoeel = TDME TDME 10
ABARA2 1DCH TDCH 10 1DDR2
nBaea3 1DPL 1DPL 10 10082
ABaRAL 1DOM 100K 10 1DDB2
npRaas 1001 1001 10 1DbDB2
BEARAG 100J 1004 10 10082
an7 1oou 100U 10 1DbDB2
aEegas 1DCS 1DCS 10 1bDB2
apanng TDPF T1DPF 10 10082
GELTRL) TDPH TDPM 10 1DDR2

For example, you first type the name of any global subschema that
some or all of your programs access. On the next row, you type the
name of the first program and its associated screen. Then you type the
other program and screen names on subsequent rows. If you want one
of the programs to access a subschema other than the global
subschema, you type its name next to that program. If one of your
programs is a batch report program, you type the name of its report
mock-up, and indicate that the program is a batch program.

Once you name these components, you can use the matrix to navigate
to the other APS facilities where you develop the components. As you
complete individual programs or the application as a whole, you can
return to the Application Painter to generate them into executable
COBOL source or to generate reports on the progress of your work.

As part of the application definition, you specify your target
environment--the environment where you want your application to
run. APS generates your application to run in the database/data
communications (DB/DC) environment you specify. You can generate

Develop and test
your application
as a prototype

Painting an Application Definition

your application for another environment simply by changing your
DB/DC target specification.

You can write an application that consists entirely of online programs,
entirely of batch programs, or you can mix online programs with batch
programs in the same application. In addition, an application--or a
single program--can access multiple DB/DC targets. For example, your
online programs can use CICS to access VSAM files and SQL databases,
while your batch programs access VSAM files and IMS databases.

The Application Painter also supports the prototyping that speeds your
development work. This painter lets you access the Scenario Painter,
where you can test your application’s behavior without having to access
your database. For example, you can simulate executing your
application, to determine whether its screens display in the sequence
you want. You can reorder the sequence as desired, without leaving the
Scenario Painter. In addition, the Scenario Painter lets you enter sample
data on your screens to test how they accept and display data.

When you are ready to access your database, you can test your
application from within APS, using the APS Prototype Execution facility.
This facility emulates your production CICS or IMS environment.

Painting an Application Definition

Display
Application
Painter screen

To define an application, list components on the Application Painter
screen as follows:

1 From the APS Main Menu, enter 1 in the Command field. The
Painter Menu displays.

To access the Application Painter screen, enter e(dit) in the
Command field, ap(plication) in the Type field, and the application
name in the Member field. The application name can be eight
characters maximum; the first character must be alphabetic; others
can be alphanumeric or special characters.

User’s Guide

17

18 Chapter 2 Paint the Application Definition

Specify DC target 3 Specify the data communications (DC) target in the DC field, as
described below:

If application contains. .. Specify this DC target. . .

Only online programs Your online DC target, such as CICS.
For a list of valid DB/DC combinations
for generating executable programs
to run on various operating systems,
see the "DB/DC Target Combinations”
topic in the APS Reference.

Only batch programs Mvs. Additionally, leave each Screen
field and I/0 field blank.

Both online and batch Your online DC target. To identify

programs programs as batch, enter *batch in

the Screens field next to each batch
program name and leave the I/O
fields blank.

Specify DB target 4 Specify the database (DB) target in the DB field. For a list of valid
DB/DC combinations, see the "DB/DC Target Combinations" topic in
the APS Reference. To specify a SQL target, leave the DB field blank
or let default to VSAM. Then go to the Generator Options screen
and specify the SQL target.

Note: If your application accesses multiple database targets, specify your
DB target as follows:

If application accesses ... Specify this DB target ...

Two DB targets, The non-VSAM target; APS always
including VSAM gives you access to the VSAM target.
Two or more DB targets, Any of those DB targets. When you
not including VSAM generate the programs, first generate

the programs of the specified DB
target. Then change the DB target to
the next target and generate the
programs of that target. For example,
if your application accesses both SQL
and IMS subschemas, generate the
SQL programs separately from the
IMS programs.

User’s Guide

Prototype using
ISPF

Specify screen
size

Specify program

Specify screen

Painting an Application Definition

Note: Specify your target operating system when you prepare to

generate the application.

5 If you are creating a CICS or IMS DC application that accesses SQL or
VSAM databases and you want to create a prototype of the
application, you can execute and test within the APS Prototype
Execution facility. Set the DC target to ISPF and the DB target to SQL
or VSAM. After testing the ISPF prototype, change the DB/DC
targets to the production targets and regenerate the application.

6 Specify the size of the screen for your application. Enter one of the
following application screen sizes in the Screen Size field. Ensure
that the development screen lets you create application screens of
the size you want as follows:

Application
Screen Size

MOD2

MOD3
MOD4
MOD5

Dimension
24 x 80 lines

32 x 80 lines
43 x 80 lines
27 x 132 lines

Development
Screen Size

MOD2, MOD3, MOD4, or
MOD5

MOD3 or MOD4
MOD4
MOD5

7 Enter your first online or batch program name in the Programs field.
The name can be eight characters maximum. The first character
must be alphabetic; others can be alphabetic, numeric, or the
special characters #, $, or @. The names all and dummy are invalid.

8 For online programs, enter the program associated screen name in
the Screens field, on the same row as the program name. Adhere to
the following naming conventions:

® CICS screen names can be seven characters maximum. The first
character must be alphabetic; others can be alphanumeric.

® |MS screen names can be eight characters maximum. The first
character must be alphabetic; others can be alphanumeric.

® |SPF Dialog screen names can be eight characters maximum.

® |SPF prototype screen names can be seven characters maximum.

User’s Guide

19

20

Chapter 2 Paint the Application Definition

Specify screen I/O

Specify report
mock-up

Specify data
structure

Specify
subschema or PSB

Specify user-
defined macro
library member

User’s Guide

10

1

12

13

14

For batch programs, enter *batch in the Screens field, on the same
row as the program name.

On the same row as your first screen name, use the 10 field to
specify whether the screen is input-only (i), output-only (o), or
input/output (io). For batch programs, leave the IO field blank.

To specify a batch program’s report mock-up, enter the mock-up
name in the Reports field. The name can be eight characters
maximum. The first character must be alphabetic or the special
characters #, §, or @; others can be any of these or numeric. You
create a mock-up using the APS Report Painter. For information, see
Create Reports with Report Writer.

Still on the same row, specify the name of any data structure file
that the program will reference. The name can be eight characters
maximum. The first character must be alphabetic; others can be
alphanumeric. To make the data structure global, or available to all
programs of the application, enter its name on a row above all
programs.

You create a data structure using the APS Data Structure Painter. For
information, see the "Data Structures" topic in the APS Reference.

If you specified a data structure file, specify in the Ty(pe) field the
program location where you plan to include it:

ws Working-Storage Section
LK Linkage Section
CA Program Commarea

Enter your program subschema or PSB name in the Sbsc/PSB field.
The name can be eight characters maximum. The first character
must be alphabetic; others can be alphanumeric. To make the
subschema or PSB global, or available to all programs of the
application, enter its name on a row above all programs.

You import your existing subschema or PSB into APS using the APS
Importer Facility. See Import Database Definitions for information.

Still on the same row, specify any user-defined macro library
member that this program will reference. Enter the name in the
USERMACS field. The member that you specify must reside in your
Project and Group’s USERMACS data set. The name can be eight
characters maximum. The first character must be alphabetic; others

Specify global
stub

15

16

17

Painting an Application Definition

can be alphanumeric. To make the member global, or available to
all programs of the application, enter its name on a row above all
programs.

You create macros using the APS Customization Facility language
structures. For information, see the APS Customization Facility
User's Guide.

If you specified a macro library member, specify in the Loc(ation)
field the program location where you plan to invoke its macros.
Valid location values are as follows:

Location

Code Description

T Default; top of program, before Identification
Division

B Bottom of program

wTt Top of Working-Storage Section

ws Working-Storage Section, after any data structures
you include in the Data Str field

wWB Bottom of Working-Storage Section

LT Top of Linkage Section

LK Linkage Section, after any data structures you
include in the Data Str field

LB Bottom of Linkage Section

10 Top of Input-Output Section

FD Top of File Section

RP Top of Report Section

CA Top of Commarea

To include procedural subroutines that all programs of the
application can reference, known as global stubs, enter on a
separate row the stub name in the Programs field, and enter *stub
in the Screens field. The name can be eight characters maximum.
The first character must be alphabetic; others can be alphanumeric
or the special characters #, $, or @. Regardless of the row where you
enter a global stub name, any program of the application can
reference it.

On subsequent rows, specify the rest of your programs and their
associated components, following steps 7 through 16.

User’s Guide

21

22 Chapter 2 Paint the Application Definition

18 To insert, move, copy, and delete rows of the application definition,
use the ISPF commands: insert; move; copy; delete; before; after.

19 Save the application definition by pressing PF3 or entering save in
the Command field. You can modify it at any time.

Special Considerations

® To create a new application definition quickly, you can copy an
existing one and modify it. To do so, use the Create Like function on
the Painter Menu.

® Deleting a component from the Application Painter matrix removes
it from the application definition, but not from the APS Dictionary.
This component is available to add it to other applications.
However, if you delete a component from the Painter Menu, you
remove it from the APS Dictionary, and must separately delete it
from any other applications that reference it.

Defining Application Components

To complete the application, you define each component using other
APS painters and facilities, following these steps, in any sequence you
want:

1 Position the cursor in the selection field to the left of the
component you want to define. Then enter one of the following
selection codes to access the painter you want:

® Online program, enter ox to access Online Express, a
nonprocedural, menu-driven facility for quickly defining online
COBOL-based programs. For details, see Define Processing Logic
and Define Database Access.

® Batch program, enter s to access the Program Painter, where you
can use APS database calls, data communications calls, and
Report Writer structures to speed batch program writing. For
details, see Create Batch Programs, and Create Reports with
Report Writer.

User’s Guide

Defining Application Components

® Screen, enter s to access the the Screen Painter (if you are
creating a character-based application). For details, see Paint
Character Screens.

® Report mock-up, enter s to access the APS Report Mock-up
Painter, where you define the physical layout of reports. For
details, see Create Reports with Report Writer.

® Data structure, enter s to access the Data Structure Painter
where you define Working-Storage data elements. For details,
see the "Data Structures" topic in the APS Reference.

® Global program stub, enter s to access the Program Painter,
where you define Procedure Division paragraphs to customize
or supplement APS-generated program logic. For details, see
Define Processing Logic.

Alternatively, access the painter or facility you want from the
Painter Menu. To do so, specify one of the following types in the
Type field: ds (Data Structure Painter), pg (Program Painter), rp
(Report Mock-up Painter), or sc (Screen Painter). Then enter the
component name in the Member field, or press Enter to display a list
of components to select from.

To make your subschemas or PSBs available to your application, you
import them into APS using the APS database importers. The
importers generate your SQL and IDMS subschemas, IMS PSBs and
DBDs, and VSAM files into a format usable with your APS programs.
For details, see Import Database Definitions.

To create user-defined macros that provide program logic to meet
your own site-specific requirements, use any text editor to create
macros and store them in the USERMACS library in your APS Project
and Group. For details, see the APS Customization Facility User’s
Guide.

User’s Guide

23

24 Chapter 2 Paint the Application Definition

User’s Guide

25

3 Import Database Definitions

This chapter contains the following sections:
® mporter Concepts

® mporting IMS PSBs and DBDs

® /mporting SQL DB2 Objects

® mporting VSAM Files

® |mporting IDMS Database Definitions

Importer Concepts

Transfer database
definitions to APS

Translate
database
information

Combine multiple
databases

APS Import Facilities allow you to transfer information about your
database definitions and their copybook records to APS programs. You
can import:

® |MS DBDs and PSBs
® IDMS subschemas
® SQL DB2 objects

® VSAM files

You can also use APS Import Facilities to transfer BMS and MFS screens.
For more information about importing screens, see Paint Character
Screens.

The APS Import Facilities translate database information such as data
definitions and/or subschemas into a format usable for generating and
precompiling through APS. When the APS Import Facility transfers
database information, the Database Definition Interface (DDI) formats
the database information to use with APS programs.

If required you can combine multiple database environments into a
single subschema by giving each subschema the same name when you

User’s Guide

26

Chapter 3 Import Database Definitions

import it using the APS database importers. Then simply reference that
name in any application that requires it.

The database importers:

Extract information from your database definition.
Load extracted information into the DDIFILE.

Generate a DDISYMB file for use by Online Express and the
appropriate APS Generator.

Generate record description copybooks of SQL DDL statements that
contain database and COBOL descriptions of each table or view in
the imported subschema.

Importing IMS PSBs and DBDs

Code DDI
statements before
you import

User’s Guide

Before you import IMS database definitions, you must code DDI
statements to identify which IMS segments and COBOL copylib record
descriptions to import. You can import the following IMS database

information:.

Input Library Description

PSB project.group.PSBSRC Native PSB source; no
modification is necessary.

DBD project.group.DBDSRC Native DBD source; no

modification is necessary.

copylibs project.group.COPYLIB For each IMS segment in your

DBD, you must have a copylib
containing a COBOL record
description.

Code DDI statements and import IMS database information as follows:

1

Copy the PSB and DBD into project.group.PSBSRC and DBDSRC files
respectively, and specify the PSB on the Application Painter. For
more information on the Application Painter, see Paint the
Application Definition.

Importing IMS PSBs and DBDs

Copy into project.group.COPYLIB one or more COBOL copylib files
containing COBOL record descriptions for each IMS segment in your
DBD.

Code a DDI DBD statement to correspond to the DBD statement in
your database. For syntax information, see the "DDI Statements"
topic in the APS Reference.

Code a DDI REC statement for each segment you want to import to
correspond to the SEGM statement in your database and its copylib
as follows:

a

Specify the name of the copylib record that corresponds to the
DBD segment identified on the DDI DBD statement using the
NAME parameter. The name of the copylib member that
contains the segment copylib record should be the same as the
segment name. If it is not, specify the copylib member name
with the COPY parameter.

Set the &GEN-DB-REC-01 NAMES flag in the APS CNTL file,
APSDBDC, to indicates the level number of your top level
copylib records.

® |f your top level copylib records begin with 01, set flag to 0.

® |f your top-level copylib records do not begin with 01, set
flag to 1 and assign a unique 01-level name using the NAME
parameter. Alternately, use the GENO1 parameter to override
the value of this flag. Specify GENO1=n to indicate that the
top level copylib record level number begins with an 01 level
number or specify GENO1=y to indicate that the top level
numbers do not begin with 01.

For example, if your copylib record looks like this:

05 W5- EMPLOYEE- | NFO.
10 W& EMPLOYEE- NO PIC 9 (06).

Code the DDI REC statement as:

DDl REC NAME=WS- EMPLOYEE- STUFF, SEG=EMPLSEG
COPY=EMPLDATA

The generated output would look like this:

01 WS- EMPLOYEE- STUFF.
05 W6- EMPLOYEE- | NFO.
10 WS- EMPLOYEE- NO PIC 9 (06).

User’s Guide

27

28

Chapter 3 Import Database Definitions

For syntax information, see the "DDI Statements" topic in
the APS Reference.

5 Code a DDI FLD statement to correspond to the copylib record field
and each field statement in the DBD. If your database contains
secondary indexes, you can search on a secondary index field
without having to generate DDISYMB for the index database. For
syntax information, see the "DDI Statements" topic in the APS
Reference.

® If the XDFLD has multiple SRCH fields, do one of the following
to include SRCH fields:

® Code a DDI FLD statement. When there are multiple SRCH
fields, APS defaults the name value to the XDFLD value. Code
a dummy COBOL name that is unique from any copylib field
name of the SRCH fields in the NAME parameter to override
the default.

® Specify the DBD value of XDFLD using the IMSNAME
parameter.

For example, for the following DBD source:
XDFLD NAME=SOUCOX2, SRCH= (EMPLASNA, SOURCCODE)
Code the DDI FLD statement as follows:
*DDlI FLD NAME=I NDEX- NO2, | MSNANME=SOUCOX2

Hint: Use the dummy name you specified on the DDI FLD
statement in database commands to qualify on a secondary
index composed of multiple SRCH fields.

® If the XDFLD has one SRCH field, code DDI DBD and DDI REC
statements only. It is not necessary to code a DDI FLD statement
for the XDFLD because the APS Generator refers to the SRCH
field definition. Note: If you write a database command against
a PCB that uses a secondary index, use the proper COBOL name
for the index field to be qualified upon. The APS Generator
recognizes a secondary index by the presence of the PROCSEQ
or INDICES parameters, and generates segment search
arguments (SSA) naming the IMS XDFLD.

Code DDI for 6 If necessary, you can code DDI statements for IMS logical DBDs and
logical PSBs that reference IMS logical relationships as follows:

relationships
a Code DDI DBD statement.

User’s Guide

Importing IMS PSBs and DBDs

b Code a DDI REC statement. Do not include information for
segments in a logical DBD if the logical segment has a single
physical source segment or the same IMS name as its physical
source segment. Note: The APS/IMS Generator does not validate
IMS logical Insert/Delete/Replace rules.

7 Place DDI statements in project.group.DDISRC.

8 Access the IMS Database Importer. To do so, from the APS Main
Menu, enter 2, Dictionary Services in the Command field. On the
Dictionary Services screen, enter 1, Import Facilities in the Command
field. Enter 2, IMS on the Import Facilities screen.

9 On the IMS Importer screen, type the DBD member name in the
Member field and enter 1, Load DBD Definitions and *DDI
statements, and generate DBD in the Option field. APS reads,
extracts and stores the DBD and DDI statement information in the
DDIFILE.

10 After option 1 completes, enter 2, Load PSB definitions and
Generate PSB and DDISYMB in the Option field. This option
references the information in the DDIFILE and reads, extracts, and
translates PSB information into DDI symbols and stores it in
project.group.DDISYMB.

Supplementing or Overriding DDI
Statements

When you import a DBD, you can write DDI statements that assign a set
of COBOL record and field names to each segment and field in the PSB.
Depending on what you want your program to do, you can supplement
or override these names with additional DDI statements. For example, if
you must maintain multiple positioning on a segment type, use more
than one PCB to reference the same segment thereby maintaining
multiple positioning. You need at least two areas in Working-Storage in
which to retrieve the same segment. This way the retrieval of one
segment will not overlay the Working-Storage area of the same
segment retrieved at a different position in the database. Another
example is multiple programs that reference the same segment type,
but some programs must use different record descriptions of the
segment. In this case, you can override the names defined in the
original DDI statements on a program by program basis.

User’s Guide

29

30

Chapter 3 Import Database Definitions

User’s Guide

To supplement or override record and field names write additional DDI
statements in a separate DDI statement member. Modify JCL in the APS
PSB utility member and reimport the database to include the new DDI
statements. To do so, follow the steps below.

1

Create a member in project.group.DDISRC dataset giving it the
same name as the program PSB.

Write DDI statements to assign the new set of names to the
segment. Use the format below, starting each statement in column
7.

- KYWD- 12-*----20----*----30---*----40----*----50---
* oo

* DDI PSB NAME=psbnane

*DDl PCB

*DDl PCB

*DDl PCB

* DDl REC SEG=segnent nane, NAME=new COBCOL- r ecor dnane,

COPY=new- copy! i bname

* DDI FLD | MSNAME=nane, NAME=new COBOL- fi el dname

* DDI FLD | MSNAME=nane, NAME=new COBOL- fi el dname

* DDI FLD | MSNAME=nane, NAME=new COBOL- fi el dnamne

The DDI statements are described below:

DDI Statement Description
*DDI PSB Specifies the program PSB.

*DDI PCB Positional or placeholder statements that
indicate the PCB for which you are assigning an
additional set of names. For example, to assign
names to the fourth PCB in the PCB, write four
*DDI PCB statements; do not write a *DDI PSB
statement for any subsequent PSB.

*DDI REC Specifies the following:
® Segmentname as it appears in the program
PSB.

® New COBOL record name of the segment.

® New copylib name for the new COBOL
record.

Importing SQL DB2 Objects

DDI Statement Description

*DDI FLD Specifies the following:
® |MS field name as it appears in the program
PSB.

® New COBOL name of a field in the new
COBOL record. Write one statement per
field.

3 Copy the APS PSB utility member, &APSPRE..ISPSLIB(SSMXPSB), to
the dataset that is concatenated before & APSPRE..ISPSLIB.

4 Modify the copy of SSMXPSB as follows:

® Add the parameter parm="ddi’ to the //DDIIMS statement so
that it reads as follows:

/ /DDl | M5 EXEC PGVEDDI | MS, REG ON=1024k, PARVE’ DDI ',
COND=((0, LT, PSBGEN), (O, LT, LI NK))

® Change the /DDICARDS DD DUMMY statement to the
following:

/ 1 DDI CARD DD DI SP=SHR, DSN=&DDI PRE. . DDI SRC(&SSMDDI)

5 Select option 2.1.2 to display the APS IMS Database Importer. Enter
the program DBD name in the Member field and execute option 1,
Load DBD Definitions and DDI Statements, and Generate DBD.

6 After option 1 completes, execute option 2, Load PSB Definitions
and Generate PSB and DDISYMB.

7 Return to the READY prompt and restart APS.

Importing SQL DB2 Obijects

Import DB2 object
to the common
data area

The SQL Importer lets you import DB2 objects stored in the DB2 system
catalog to a separate staging area in APS. This staging area, known as
the APS common data area, is where you create and generate
subschemas for imported DB2 objects using the SQL Subschema
Maintenance utilities. For more information about these utilities, see
the Administrator’s Guide: Chapter 3, "Managing APS Facilities and
Libraries."

User’s Guide

31

32

Chapter 3 Import Database Definitions

User’s Guide

You can import the following DB2 object types using the SQL Importer:

Alias (object only)
Database

Index (object only)
Storage group

Table and table space

View (object only)

Import DB2 objects as follows:

1

From the APS Main Menu enter 2, in the Option field. APS displays
the Dictionary Services screen. Enter 1 in the Option field. APS
displays the Import Facilities screen. Enter 1 in the Option field. APS
displays the SQL Importer screen. Enter 1 in the Option field to
display the DB2/DBP Object Import screen.

In the Command field, type the number that corresponds to the
object type you want to import.

Type the name of the object you want to import in the Object Name
field. If you do not know the name of the object, leave this field
blank and press Enter. The SQL Importer displays the DB2 Object List
screen. This screen displays data set information on the object types
in the DB2 system catalog.

Select objects from the list by typing an s to the left of each desired
object name. You can scroll the screen using the ISPF UPnn and
DOWNnNN commands and by setting the SCROLL field to page, half
or csr. Selecting an object creates utility control cards that direct the
batch job to import the object to the common data area. To cancel
your selections and return to the DB2/DBP Object Import screen,
type cancel or can in the Command field and press Enter.

Type end in the Command field and press Enter or press the
appropriate PF key to view a screen that lists the objects you
selected from the object list. The SQL Importer displays the list of
selected objects. To delete a selection from this list, type d in the
selection field.

Importing SQL DB2 Objects

6 Return to the DB2/DBP Object Import screen by doing one of the

following:

® Press Enter

® Type end in the Command field and press Enter

® Press the appropriate PF key

7 Complete the remaining fields on the DB2/DBP Object Import screen
as described below and press Enter.

Field Value
Object Creator If you typed a name in the Object name field,
type the object creator’s TSO ID. Defaults to

your TSO ID.

Job Class Type the job submission class. Valid values are:

J1-J5 APS defines job cards J1-J5 on the Job
control cards screen. To access this
screen, type J in this field.

JC ISPF job card defined on the ISPF Log
andLists Defaults (0.2). You must
increment the job card letter.

Object Only Y(es) Default for Index, View and, Alias.
Imports the object specified in the
Command field or selected from the
Object List screen without associated
objects.

N(o) Default for Storage Group, Data Base,
Table Space, Table, and Column.
Imports the object specified in the
Command field or selected from the
Object List screen plus all objects
associated with the specified objects.

Report Only Y(es) Generates an import report for the
object specified but does not import
the object.

N(o) Default. Generates an import reportin

addition to importing the objects
specified. For more information about
reports, see Generating a DB2/DBP
Object Import Report.

User’s Guide

33

34

Chapter 3 Import Database Definitions

Generate
DDISYMB symbols

Determine the
impact of
importing DB2
objects

User’s Guide

Field Value

Submit Job Now Y(es) Default. Submits a batch job to import
the object specified in the Command
field or selected from the Object List
screen.

N(o) Generates the import job JCL and
stores it in the data set specified in the
following fields. This JCL can be used
for later job submission.

8 Access the APS Generator Options screen. From the APS Main Menu,
enter 0 in the Option field. APS displays the Options Menu. Enter 1
in the Option field. APS displays the Generator Options screen. Set
the SQL field to a valid SQL target; for example, DB2, SQLDS, or
SQL400. .

9 Access the SQL Importer screen and type 2 in the Option field.

10 The DDIFILE project and group for the DDISYMBs defaults to your
current user project. Ensure that your current project is identical to
the project and group under which the subschema was created.

11 Type the subschema name in the Member field and press Enter.

Note: For more information on setting generator options, see Setting
Options.

Generating a DB2/DBP Object Import
Report

You can determine the impact of importing a DB2 object to the
common data area by generating a DB2/DBP Object Import report. You
can generate this report before, during or after importing DB2 objects.
Reports generated after the import reflect all additions, deletions, or
name changes made to the dependent common data area objects at the
time of report generation.

The DB2/DBP Object report provides a cross reference of the objects in
the DB2 catalog and the APS common data area. It illustrates where a
DB2 object fits into the hierarchy of the DB2 system catalog versus

Importing VSAM Files

where it fits into the hierarchy of the common data area. The cross
reference report lists objects in groups to illustrate hierarchical
dependency.

The DB2/DBP Object Import report can consist of:
® Two side-by-side comparison lists with the following information:

® The imported DB2 object and the DB2 system catalog objects
dependent upon it (those lower in the hierarchy).

® The imported object plus common data area objects that are
dependent upon it after it is imported.

® Two side-by-side comparison lists of the DB2 and common area
objects that contain the imported object (those higher in the
hierarchy).

® Alist of the associated common data area objects added since the
last import of the object type.

Special Considerations

® If your DB2 system supports referential integrity (DB2 version 2 and
higher), the SQL Importer also imports tables referenced by foreign
keys.

® \When you generate an Object Import report, enter information in
all required fields of the DB2/DBP Object Import screen.

® The dependent common data area objects are listed under the
report column titled DBP Object.

Importing VSAM Files

Code DDI
statements before
importing

Before you import VSAM files, you must code DDI statements. The DDI
statements identify the VSAM file and the COBOL copylib record
descriptions you want to import. For each VSAM file record, you must
have a copylib file that contains a COBOL record description. These
copylib files must reside in project.group.COPYLIB.

User’s Guide

35

36 Chapter 3 Import Database Definitions

User’s Guide

Code DDI statements and import your VSAM file information as follows:

1

10

Copy the copylib file(s) that contain the COBOL record descriptions
for the VSAM file(s) into project.group.COPYLIB COBOL.

Code a DDI VSM statement to correspond to the VSAM file external
ddname. This statement identifies VSAM file attributes. You can
specify parameters to generate IDCAMS. For syntax information, see
the "DDI Statements" topic in the APS Reference.

Code a DDI REC statement for each copylib record to correspond to
the copylib record name and copylib filename with the longest
MAXLEN. For syntax information, see the "DDI Statements" topic in
the APS Reference.

If your top-level copylib records do not begin with 01, set global
flags &VS-GEN-01-USING-RECNAMES and GEN-DB-REC-01-NAMES
and GEN-DB-REC-01-NAMESin APS CNTL files APVSAMIN and
APSDBDC to yes.

If the VSAM file you want to import is keyed, code a DDI IDX
statement for each index that corresponds to keyed copylib field
name and copylib file name. All DDI IDX statements must
immediately follow the DDI REC statement. Write overlapping
record keys as ordinary DDI IDX statements. APS generates IDCAMS
KEYS keyword according to the OFFSET and KEYLEN keywords on
the DDI IDX statement. For syntax information, see the "DDI
Statements" topic in the APS.

Code a DDI SUB statement to correspond to the copylib record
name(s) and VSAM file external ddname. This statement defines a
subschema for your VSAM file. Note: To define a subschema with
multiple VSAM files, assign a RECORD keyword to each VSAM file
you include. For syntax information, see the "DDI Statements" topic
in the APS .

Assign a unique subschema name and enter it in the Application
Painter field, SBSC/PSB.

Place the DDI statements in project.group.DDISRC.

Access the VSAM Importer. From the APS Main Menu screen, enter
2, Dictionary Services in the Option field then enter 1, Import
Facility then enter 3, VSAM.

From the APS/VSAM File Importer screen, enter the DDISRC name
(the member name) in the member field, and enter 1 Load DDI

1

12

Importing IDMS Database Definitions

Information From DDISRC in the option field. APS reads, extracts
and stores the DDI statement information in the file DDIFILE.

After option 1 completes, execute option 3 - Generate DDISYMB
Symbols From DDIFILE. APS reads, extracts, and translates DDIFILE
information into DDI symbols, and stores them in
project.group.DDISYMB.

Generate IDCAMS, enter 2, Generate IDCAMS Input Into Amserv in
the option field after step 5 completes. The IDCAMS option
generates IDCAMS for all files that the subschema references, but
more than one subschema can contain a given file. Tailor the
IDCAMS so no existing files are deleted. Store the IDCAMS source in
your AMSERYV data set.

Importing IDMS Database Definitions

Translate
database
definitions

The IDMS Importer translates IDMS database definitions from your
IDMS dictionary into a format usable for generating and precompiling
through APS.

Import your IDMS data definitions as follows:

1

Ensure that the IDMS subschema resides in your IDMS dictionary
(IDD).

Access the IDMS Importer. From the APS Main Menu screen, enter 2
in the Option field. APS displays the Dictionary Services screen. On
this screen , enter 1 in the Option field. APS displays the Import
Facility screen. On the Import Facility screen, enter 5 in the Option
field. APS displays the IDMS Importer screen.

Enter the IDMS subschema name in the Member field. You can keep
or change the displayed IDMS schema name and version number.

If you are importing IDMS12.0 subschemas, ensure that the dataset
name of the subchema appears in the IDMS 12.0 SYSIDSM DSN field
on the IDMS Options panel.

Enter the database name that contains the subschema in the IDMS
Dictionary field.

User’s Guide

37

38 Chapter 3 Import Database Definitions

6 Enter 1, Import IDMS Subschema from IDD and Generate DDISYMB,
in the Option field.

User’s Guide

39

4 Paint Character Screens

This chapter contains the following sections:

Screen Painter Concepts

Painting a Screen

Painting Field Edits

Creating and Running a Screen Flow Prototype
Modifying Screen Layouts

Setting Parameters for Generation

Importing BMS Mapsets

Screen Painter Concepts

Develop screens
interactively

Paint screen fields

The APS Screen Painter lets you paint character-based screens that are
intuitive and easy to use. You first paint text, input/output fields, and
then blocks of fields that accept multiple record occurrences. You then
specify field names, field attribute and edit criteria, and generation
parameters. The APS Generators retrieve this screen information from
the Application Dictionary to produce native screen source code.

A character screen consists of fields and blocks of fields that you paint
on a blank screen. You paint two types of fields in the APS Screen
Painter:

Input/Output (I/0) fields that let end users view, add, update, and
delete information. You paint I/O fields by typing a string of Xs.

Text fields that display text, such as prompts for I/O fields, column
headings, screen headings, section headings, and explanatory text.
You paint text fields by typing any text you want.

Application Screen with Text and I/0 Fields shows a sample application
screen with I/0 fields and text fields.

User’s Guide

40 Chapter 4 Paint Character Screens

Create repeated
record blocks

User’s Guide

Figure 4-1. Application Screen with Text and I/O Fields

CUSTAORER DRBER ERTAY SYSTEH
APS DEUELOPMERT CERTER
CHSTOMER ORDERS IHGUIRY

START BRAOWSE DATE ====> KHRRRKHA_

CUSTOHER HE === =3 HRRHRA CUSTOMER HAME === ARARAHHHRHRHRHRHRHRA
W TEET M
RRRRRR CRRRHREHR RRRRRRRR W

thEEE R R LR R EERE LR EEEERE RS LR R EE R R EERE LA LR R RERE LR ELEERE EREERE R R AL EEREY

Your screens can also include repeated record blocks that accept or
display multiple occurrences of one or more records. With a simple
command, you can repeat a block of one or more source row as many
times as necessary. A repeated record block generates a table in

Working-Storage.

Sample Application Screen with a Repeated Record Block shows a
repeated record block created from the row of I/O fields in Application

Screen with Text and I/O Fields.

Figure 4-2. Sample Application Screen with a Repeated Record Block

CUSTOEER DRDER ERTRY SYSTEM
APS DEUELOPKERT CENWTER
CHSTOMER OADERS INQUIRY
START DAOHSE BATE ====> WHARRAAR

CUSTOWER W ==========> R{R4R% CUSTOWER RAKE ===> RERRRHRRRRRRRRRRRRRR
fADER OADER EWTAY ORDLA DOL O0DER
HUWBER DRIE BRIE SIRTUS
ginddd Haddiddn st

ARARA ARRARARR ARARdRdR AA
HERRHE HEHRHHHR HEHRBAHE RA
RARARR ARRRAKAR RRRARRRR AR
ARRAAE ARARAHAR ARHARARR RA
RRRHAR HEKRHANR RERRRRAR BE
ARHRAR ARARARAR fndndndn R
ARARRR ARRARARR AARRRRAR R

thEEELEEEEE LR EREEREEELRERE LR DR REREELEERE LR EERERE SR LR EERE L EERE SRR R R RS

Choose design
options

Access online help

Define 3270
attribute support

Screen Painter Concepts

When you create a record block, you do not need to paint and assign
characteristics to each field individually--all fields reflect the

characteristics of the source row. For example, changing the length of
the Order Number field changes the length of all fields in the column.

The APS Screen Painter provides editing and design options to help you
paint the screen. For example, you can specify where the Command
field automatically appears on your screen, and can determine whether
your text displays in upper case, lower case, or both.

Additionally, the Screen Painter has an extensive help facility that you
can access from your screen by pressing PF1.

Field Attributes

APS lets you assign field attributes, such as field protection, brightness,
cursor positioning, and color, to both I/0 and text fields. The APS Screen
Painter supports full and extended 3270 attribute capabilities,
including:

e Color

® Underline, blinking, and reverse video features

® Cursor positioning when the screen displays to the end user
® Bright and dark intensity

® Numeric keyboard locking

® Field protection

® Assignment of initial value

® Light pen sensitivity

APS assigns default attribute values to each field for you. Alternatively,
you can quickly override the default by entering the values you want, as
illustrated in Field Attributes Screen.

User’s Guide

41

42

Chapter 4 Paint Character Screens

Define the
internal, input,
and output data
representation

User’s Guide

Figure 4-3. Field Attributes Screen

CUSTOMER ORDER ENTRY SYSTEM
APS DEUELDPMENT CEHTER
CUSTOWER ORDERS IHQUIRY
START BROWSE DATE ====> KKRKKKRK RERRRRRRRRRNARR

CUSTOMER HD ==========3 HKHRKRR CUSTOMER HAME ===> HRHRRRKRHEARHRRRRHRR
———=CGLOBAL DATA ELENENT—

ORDER ORDER EWTR| » ----— FIELD ATTRIBUTES ------
HUMBER DATE COMMAND === _ >
———————————————— Name . . . CO-CUST-HUMBER
HHHRRR HHHRARAR | Length . : 6 % edits : HD
HRARRR ARMARRAR | Intensity N Num lock . . ON
ARARAR ARARARAR LH?E .« . U Light pen . OFF
ARRARR ARRRRARR . . . O TInit cursor HO
RRARHR ARnRARAS | Value
ARnAAR ARRAARAR
AHRRRR ARHRARAR
RRnARR RRRARRRR RRBRRRAR b

Field Edits

Field edits let you define the display and storage characteristics for /O
fields. Field edits can validate input data and format that data for
storage and output. You can assign characteristics, such as an internal
picture, output picture, edit mask, or date format. Or, you can test for
specific values or a range of values.The internal data representation
specifies storage characteristics for data in a field. Input and output
data representations let you specify the type of data that users can
enter or that a field can display. For example, an input data
representation for a field may permit a user to enter numbers from 1 to
1,000; an output data representation may require that data display a
dollar sign, decimal point, and two places following the decimal point.

You can also code your own edit routines and apply them to multiple
screens across any number of application systems. APS field edits ensure
that entries match specified definitions. Some fields, however, require
specialized testing. For example, if a field has alternate formats, no
single field edit can confirm the validity of all possible entries. In such a
case, you can write an application edit that verifies all legal entries. Or,
you can select a predefined edit from a centralized application edit
listing.

Field Selection Screen for Screen Field Editing shows the available edit
categories.

Select I/0 field
definitions

Screen Painter Concepts

Figure 4-4. Field Selection Screen for Screen Field Editing

COMMAND ===3>
I - Sueclfy 1nEu1 edits)
- Lll:[.l U ud LII:’:_i or conversions
S Select APS edit menu i}
FIELD-HAKE LEN ROW COL
START-BRAOWSE-D gpg Bey @27
SAUEKEY s BT BL7
s_ CUSTOMER-HO g6 o8 e27
CUSTOMER-HAME 28 BRY #h8
ORDER-HO BOG 01s B0k
CUST-ENTRY-DATE #ag B1s 818
ORDER-DEL-DUE-D 08 Ble B34
ORDER-STATUS 82 Ble 853
MESSAGE B9 026 002
BOTTOM OF DATA

SCROLL==> PRR
0 - Specify output edits
pecify an internal
Delete a field's edits

IHTERHAL

icture

INPUT OUTPUT UALUES

Global Data Elements

You can select global I/O fields, complete with definitions, attributes,
text prompts, and edits, from the APS Data Element Facility. At
generation time, APS picks up the definitions in the Data Element

Facility.

Figure 4-5. Data Element Facility Listing of I/O Fields

CUSTRHER RO =

CHSTOMER DRDER ERTRY
AP DEUELOPHENT CLH
CUSTOMER OADERS IR

START DROUSE DRTE ====> HRRRARAA

-——— DATA ELEMENT LIST
COMMAND ===> _

Select one or more:

Data element name Context

c
=
=]
=
=)
—
-

= =

=mimim
T
=
=]
=
™

TOMER-HO
MBER

H
ER-DUEDATE
ER-IHDATE
ER-HO
ER-STATUS
éHHS

e e —
= = I = T Tty =)
l'|'|—l =

TIMS I I I
==
=

|—|:a—|—|—:u—=|=|:|=u:l==
e A= — =]
I AT e | Fl:u:l:l:u:ﬁﬁ ™
|
—
=

rma
——
e

If you modify a global field on your screen, it becomes a local field. APS
then stores the field definition as part of your screen member. The local

User’s Guide

43

44

Chapter 4 Paint Character Screens

Know your site
and project
standards

Review screen
sequence with
users

Create the

prototyping
sequence

User’s Guide

screen field does not change when the original global field in the Data
Element Facility changes.

Depending on how your site or project standard implements the Data
Element Facility, you can do some or all of the following:

Create and modify your own I/O fields.
® Select I/O fields from the Data Element Facility.

® Assign field attributes, assign field edits, or perform other
modifications to I/O fields selected from the Data Element Facility.

Before you paint your screens, check with your APS Administrator or
Project Leader to determine which of these methods you can use to

create and modify I/O fields. The procedures in this chapter cover all
methods.

Scenario Prototype

After you paint several application screens, you can use the APS
Scenario Painter to create and run an application model, with or
without data. Your end users can view a typical production sequence of
screens, enter data into I/0 fields, and pass entries between the screens.
You do not need to assign field attributes and edits or generate your
screens before running screen flow scenario prototypes.

To create a scenario prototype, you list the screens in your application in
the order you want to view them. For example, if you run the scenario
in Screen Listing in Scenario Painter, the Customer Order Main Menu
displays first, followed by the Customer Record Maintenance screen--
just as if an end user requested the screen from the menu. The
remaining screens display in sequence and the prototype returns to the
menu to exit the application.

Figure 4-6. Screen Listing in Scenario Painter

EDIT -—- SCEMARID: TDSCEN -------------mmmmmmm oo COLUMHS @81 @
COMMAND ===>» §CAOLL ===> LSk
-LTHE- -SCREEN- ----------—- QFRFFHPTITIEHiﬁ —————————————— USER COMMEHT --
ARA1AR TDKE CUSTAKER ORDER WATH HERI M[HH SELECTS KLY
gopade TOCH CUSTOMER RECURD MAIHTEHRKCE UPDRTE

BHBIAE TOPL PROTS INULRTORY 118

gogade 100N URDER RECORD MAIMTERAHCE

BEBGLAE 10T AADER EO8T TOTALS SUMMARY SEAEEH
gadods 100J CUSTURER CHOERS INQUIRY BROWSE OHLY

Dynamically
change prototype
at run time

Simulate
application data

Tailor screen
generation

Screen Painter Concepts

As you run the prototype, you can make changes to correct errors and
meet new user requirements by:

® Displaying application screens in any sequence
® (Creating and inserting new application screens
® Changing an existing screen

® Entering data in screens

During the prototype, you can enter data in screen fields and pass the
data to other screens. In Entering Sample Input Data, the prototype
displays the second screen of an 11-screen scenario with user-entered
data. When you enter data during a prototype session, you can save it,
and reuse it to simulate the movement of data. All data you enter
automatically becomes available to other screens that contain
identically named fields.

Figure 4-7. Entering Sample Input Data

CUSTOMER DRDER EHTRY SYSTEM
APS DEVELOPMENT CENTER
CUSTOMER RECORD MAIHTENAHCE

b
» HallyHare, Inc.

> 222 Shuttle Rue.

» Lape Carnivore, WD
> 28852_

ENTER CUSTOMER NUWBER TO QUERY A RECORD

Target-Specific Parameters

The APS Screen Generator takes your designs from the APS Screen
Painter and generates native map definitions. When you are ready to
generate, you specify parameters that tailor your screen for the CICS,
DDS, IMS DC, ISPF Dialog, or ISPF prototyping target environment.

For any environment, you can:

® Print expanded assembler macros.

User’s Guide

45

46

Chapter 4 Paint Character Screens

CICS-specific
options

IMS-specific
options

ISPF-specific
options

User’s Guide

Retain field names as assembler labels.
Unprotect I/O fields for prototyping.
Modify I/0 field attributes at run time.
Create a system message field.

Change how text fields display at run time.

For the CICS environment, you can also:

Generate an assembler END statement.
Define a unique transaction ID.
Specify a mapset name.

Indicate the starting line of the map on the physical screen.

For the IMS environment, you can also:

Generate an assembler END statement.

Specify standard device characters for different terminals and
printers.

Provide a field for cursor feedback.

Generate MFS code for logical page requests.

Define MFS system literals.

Rearrange the order of input message fields (MID/MOD).

Assign trancodes, IMS commands, or logical paging commands to PF
keys.

Construct MFS trancodes.

For the ISPF Dialog environment, you can also:

Generate native definition statements to override ISPF defaults.
Provide tutorial help panels.

Control PF key processing.

Painting a Screen 47

Painting a Screen

Paint an application screen following the steps below. After step 1, you
can perform some or all of the steps in any order.

Access the screen 1 Access the Screen Painter to create or modify a screen in one of the
following ways:

® From the Application Painter, enter s in the selection field to the
left of the appropriate screen name.

® From the Painter Menu, type e in the Command field, sc in the
Type field, and the screen name in the Member field. Then press
Enter.

Apply screen 2 To specify your editing session options, type profile in the Command
design options field. APS displays a screen displaying the current editing session
options in your user profile.

3 Specify editing session options, as follows:

Option Description

Command Location Specify where the Command field appears -
enter top for the top-left corner or bottom
for the bottom-left corner.

Caps on/off On Convert text fields to upper case.
Off Preserve or restore text fields as you
enter them.
Nulls on/off On Insert data directly into a row.
Off Fill rows with spaces.
Keys on/off On Display the Screen Painter function
key definitions at the bottom of the
screen.

Off Do not display keys.

User’s Guide

48 Chapter 4 Paint Character Screens

Option Description

Display field name Yes Activate the Field Name screen. As
you move the cursor between fields
by pressing the Enter key, this screen
displays the name of the current
field. Pressing PF3 removes the
screen from display, but keeps this
option active.

No Do not display the field name. To
perform text editing functions, such
as typing in a new field or moving
fields with the space bar, set this
option to No.

4 Press PF3 to set your selections and return to your screen. The
selected options remain in effect for all application screens until you
change them, either in the current editing session or a subsequent
one.

Paint text fields 5 To paint a text field, position the cursor where you want the field to
begin and type the text. Text fields can consist of any characters,
including special characters. To enter one or more Xs in a text field,
you must distinguish the text from an I/O field by putting an
underline character on either the left or right side of the X, for
example, e_xit.

Paint I/O fields 6 To paint an I/O field, position the cursor where you want the field to
begin, and type Xs for the maximum length of the field. I/O fields
can have as many characters as can fit on one row of your screen,
excluding column 1. Note: You can name the field when assigning
field attributes; instructions are later in this procedure.

7 To change the length of an I/O field, move the cursor to the Xs
designating the field, and type in your changes. You can space over
or delete the Xs, or extend the field with more Xs.

Select predefined 8 To select an I/O field from the Data Element Facility, press PF9 from
/0 fields anywhere on your screen. The Data Element List screen appears on
the right side of your screen. An asterisk (*) preceding a name
indicates fields that already exist on this screen, and therefore are
not available.

User’s Guide

Painting a Screen

9 Navigate the Data Element List screen as follows:

® Enter L xxx in the Command field to locate a portion of the data
element list, beginning with field names matching the letters
you specify. For example, L ERR redisplays the data element list
with the field ERR-MSG as the first entry.

® Press PF7 to scroll backward within the list.
® Press PF8 to scroll forward within the list.

® Press the Tab key or space bar to move to the next element
within the list.

10 To display a field definition, type ? in the selection field preceding
the field name(s) you want. The Info screen, as shown in Data
Element Facility Information Screen, displays the information for
the selected screen field. To exit the current Info screen, press either
PF3 to take you to the next Info screen if you entered ? on several
fields, or PF4 to position you back in the data element list.

Figure 4-8. Data Element Facility Information Screen

CUSTAMER DADER ERTRY

H ————— DATA ELEMENT LIST -------
APS DEDEL INFO FOR <CO-ORDER-DUEDATE>
Length . . : 088
CHS =——===INF0"FOR <CO-CUST-HUMBER> OFF
Length . . : BB6 0FF
STRART OROWSE DATE Intensity : H Num lock . : ON HO
Lﬂ?e P Light pen : OFF
CUSTOMER RO ==========3 I ... :OH Init cursor: HO
Init value :
ERTENDED ATTRIBUTES:
Hl?h]lghl: HOHE
Color . : HEUTAAL Format . . :
Modify . : NO Ruledline : hl]
APS EDITS: HO
Internal : HO Ualues . . : HO s
Input . : ND Qutput . . : HD
FLD1
FLD2
FLD3
FUHCTION
GLGFLD1

11 To select fields, type s in the selection field preceding the field
names you want to include on your screen, and press Enter. A right
arrow (>) displays in front of each field you selected. To delete a
selection, type d in the selection field, and then press Enter.

User’s Guide

50 Chapter 4 Paint Character Screens

User’s Guide

Figure 4-9. Selecting Fields from the Data Element List

RUSTOMER DRDER EHTRY
N s DATA ELEMENT LIST -------
APS DEUELAPHERT CER| COMMAND ===>
EHSTOMER DHDERR 180U Select one or more:
START BROWSE DATE ====» HAHARHHH Data element name Context
o BASE-PRICE
CUSTOMER HO =s=s=ssssssp s CM-CUSTOMER-HAME
CH-CUSTOMER-HD
s CO-CUST-HUMBER
CO-0DRDER
s CO-ORDER-DUEDATE
5 GD-ORDER-THDATE
s LO-DRDER-HO
5 LD-DHDER-STATUS
DIMEHSIDHS

12

When your selection is complete, press PF3. A screen displays
information on the first field you selected from the data element
list. The Text field displays the text prompt or label for the field. The
Length field displays the field length, excluding any accompanying
text from the Text field.

Figure 4-10. Field Selected from the Data Element List

START DAOWSE DATE ====> HHXRNNER

CUSTOMER DADER - mommmm oo
HAMNE . . :CO-CUST-HUMBER
APS DEUELOPHE |TERT

.. cHif
LEHETH: dnan6
CUSTOMER OADER .----------=-=—=—=—mmmommmmmeme oo

13

14

Position the cursor where you want to place the field and press
Enter. If the field has a text prompt, the prompt begins at the cursor
location.

The selected field screen presents the fields you selected in
alphabetical order. You can use PF keys to manipulate the display of
selected fields and the location of the information screen (so that it
is not in your way as you position a field), as follows:

PF3 Cancel any selected fields not yet placed on the screen.
PF5 Display first field.

Create repeated
record blocks

15

PF6
PF7
PF8
PF10
PF11

Painting a Screen

Display last field.

Display previous field.

Display next field.

Move information screen counter-clockwise.
Move information screen clockwise.

To create a repeated record block from any row(s) of I/0 fields you
paint, position the cursor on the source row--the top row to be

repe

ated--and press PF7. The Repeated Block screen displays.

Figure 4-11. Creating a Repeated Record Block

CHRTOMER ORDER EHTRY SYSTEM

————— REPEATED BLOCK ------- |\PHERT CENTER
COMMAHD ===>
DERS THQUIRY
Humber of rows . . .

STR|| Mumber of occurrences 8_
H1H] STNMER RNKE > ARRERERARERRRARERRRR
ARDER OARER ENTAY ONDER BUE DRDER
HUMBER DRIE BARIE SIRTUS
diddnd dRARAHAR Haddddde dd

16 Complete the fields in the Repeated Block screen as follows:

® Enter the number of source rows. Each row in a repeated record
block encompasses the entire width of the screen.

® Enter the total number of times the block of source rows should
occur. For example, a record block that contains two source rows
and has five occurrences produces ten lines on the screen. You
can create a record block covering as many consecutive blank

ines as are available on the screen.

17 Press Enter to create the record block indicated, or press PF3 to exit
the screen without creating the record block. Creating a Repeated

Record Block shows the record block specified in Repeated Record

Block.

User’s Guide

51

52

Chapter 4 Paint Character Screens

Assign a screen
title

Prototype screen
flow for your end
user

Assign field
attributes

User’s Guide

Figure 4-12. Repeated Record Block

START DAOWSE DATE ====> HHXRNNER

CHSTOMER HO » HNRREN CUSTOMER HAME > HRRRENRRERRRHRERARAN
ARDER NADER ERTRY ORDER DUE DADER
HUMBER DRIE DRIE SIRTUS

dndd dddriddn fdudddud #a

ARAAR HRRRAHAR ARRARRRR HR
AinAdd HRARAHAR AdnaddRg Hi
RARHAR HEKRHHER RRRHKRRE WX
ARHARR RHRRARAR ARHARARE AR
RARRAR HRARHAAR AARARARE HA
ARdAde HRARARAR AnHAdRAE AR
ARARAR RARARARR ARARARAR AR

thEE R EE LR R EERE LR EERE R LR R EEREELEERE LA LR R RERE LR ELEERE ELREREEE LA EEREY

CUSTOMER ORDER EHTRAY SYSTEM
APS DEUELOPMENT CERTER
CUSTOWER OADERS IHQUIRY

18 To assign a descriptive screen title that appears when you prototype
in the Scenario Painter, enter title or t in the Command field. The
Screen Title screen displays. Type your description in the Title field,
and press PF3 or enter end on the Screen Title screen Command
field. The description does not appear on your screen.

19 To prototype your screen flow in a scenario prototype to your end
user, see Creating and Running a Screen Flow Prototype. You do not
need to assign field attributes or field edits, or generate the screen,
to do a scenario prototype--you can prototype anytime from this
point on in the procedure.

20 To assign field attributes by modifying the default attribute values
for your text and I/O fields, you can:

Display attributes for a specific I/0 field or text field. To do so,
position the cursor on that field and press PF12. Or, to display
attributes for the field nearest the current location of the cursor,
press PF12. You go to the nearest I/O field, skipping any text
fields unless the attributes were previously modified.

Field Attributes Screen - Single Field Display illustrates the Field
Attributes screen for a single field.

Painting a Screen

Figure 4-13. Field Attributes Screen--Single Field Display

CUSTOMER HO

ORDER
HUMBER

CUSTOMER DRDER EWTRY SYSTEM
APS DEUELOPMENT CENTER
CUSTOMER ORDERS INQUIRY

START BROWSE DATE ====> KKRRKKRR

> HEREAA

ORDER_EHTR
DATE

GLOBAL DATA ELEMEHT

RERRBRRRARRRRAR
CUSTOMER HAME

————— FIELD ATTRIBUTES ---——-
COMMARD ===» _
Name . . . CO-CUST-HUMBER
Length . : 6 APS edits . HO
%ntensily H rqnhiuck .. HFF
MBI~ D ON Init cursor” HO
Ualue

RRHRRRRS b

> HEHRRRRHRRRRRRRR AR

® Display attributes for all fields. To do so, enter FA in the
Command field. A full-screen display of field attributes displays,
as illustrated in Field Attributes Screen - Total Field Display.

Figure 4-14. Field Attributes Screen--Total Field Display

COMMARD ===3> _
LINE FIELD-HAME

[t

M DT CS EDIT WOD CO BL
F F

MD HM DT C
TFF I
T 1T FF
1FF ¥
T FFF K
i1 F F
T FFET
1F FF
10 F T
T FF ¥

UK RU AL F
F

21 Modify attributes for all screen fields, as follows:

®* To modify a field name or attribute, type over the existing
value. As soon as you modify the attributes of a field selected
from the Data Element Facility, the field becomes a local field
and is unaffected by any changes made to the field definition in
the Data Element Facility.

® To change attribute values for fields in a repeated record block,
modify the applicable fields in the source rows.

User’s Guide

53

54

Chapter 4 Paint Character Screens

User’s Guide

To modify extended attributes for I/O fields, such as color and
highlighting, press PF5 from the Field Attributes screen or scroll
the full-screen Field Attributes screen to the right.

Valid attribute values are:

Attribute Description and Values

Name I/0 field name; maximum 16 characters. Text
fields do not have names because programs do
not reference them.

Hints:

® If you give a screen field the same name as
its corresponding database field, APS Online
Express automatically maps the relationship
for you, prefixing the field name with the
screen name; otherwise you must map the
screen field to the database in your program.

® |f the same field appears on several screens,
give it the same name on each screen. APS
lets you pass data between identically
named fields on different screens during
scenario prototyping and ISPF prototyping.

Length Display field only; to change field length, move
the cursor to the Xs designating the field and
type in your changes. You can space over or
delete the Xs representing the field, or extend
the field with more Xs.

Intensity B Bright.
N Normal (default).
D Dark.
Type U Unprotected (default); field is for both

input and output.

-

Protected; field is output only.

Text field with default attributes
changed.

Attribute
MDT

Value
APS edits

Num Lock

Light Pen

Init cursor

Color

Painting a Screen

Description and Values

Applies to IMS and CICS only. The modified data
tag tells the terminal when to return field data.
When this tag is True (T) for a field, the terminal
always sends back data; when False (F), the
terminal returns data only if the data changes.

T Default for I/0 fields; data returned

F Default for text fields; returns blanks
unless end user modifies the field.

Note: Set all fields to True when using Field Edits.

Initial value for screen field; maximum is field
length or 27 characters, whichever is less.
Display field indicating if any field edits were
assigned to the screen field.

T Activate keyboard numeric shift lock
F Deactivate numeric shift lock (default)
T Light pen detectable.

F Not light pen detectable (default).

F Do not position cursor on this field

when the program sends the screen.
Default for all but the first 1/0 field.

T Position cursor on this field. Default for
first 1/0 field.

BL Blue

GN Green

NU Neutral

PK Pink

RD Red

TQ Turquoise

YL Yellow

User’s Guide

55

56 Chapter 4 Paint Character Screens

Attribute
Highlight

Modify

Format

Ruledline

User’s Guide

Description and Values

These are mutually exclusive fields that specify
the intended attributes for highlighting a field:

BL Blinking
UL Underline
RV Reverse video

Valid values are:
T Turns highlighting On
F Turns highlighting Off

Because the fields are mutually exclusive, you
can set only one field to True. The other two
fields must be set to False.

IMS only.

F Program cannot modify extended
attributes at run time (default).

T Program can modify extended
attributes. APS generates the extra
attribute bytes required.

For KANJI use only. Format field characters for a
double-byte character set (DBCS) terminal as
follows:

Blank Single-byte characters only (default)

D Double-byte characters only
M Single- and double-byte characters
combined

For KANJI use only. Place lines around the field
on a DBCS terminal, as follows:

spaces No lines

Left side of field
Right side of field
Over field

Under field
Surround field

00-0F Combination of lines

wc oo ™

Create field for
system messages

Paint Online
Express program
fields

Assign field edits

22

23

Painting a Screen

To cycle through and assign attributes to all your I/O and text fields
from the Field Attributes screen, press PF12. The screen always
appears above or below the active field; the asterisk in the screen
points to the active field. Each time you press PF12, the Screen
Painter saves the changes made to the current field and moves to
the next field. To remove changes for the current field, enter cancel
in the Command field.

If you assign attributes on the full-screen Field Attributes screen,
press PF3 or enter end in the Command field to exit and save your
changes, or enter can in the Command field to exit without saving
your changes.

Note: For more information on field attributes, see the "Attributes,
Screen Fields" topic in the APS Reference.

24

25

26

27

To specify the system message field to display both system and
program messages, choose one of the following:

® Paint the system message field in any row. Name the field
SYSMSG. Assign the Protected field attribute to the field.

® Enter yes or sysmsg in the SYSMSG Message field on the Screen
Generation Parameters screen; APS automatically creates the
field on the bottom line of your screen.

If you want the end user to execute program functions by entering
a function code on the screen, paint function code fields on your
screen. To do so, see Define Database Access.

For your program to execute database functions, your screen
generally needs fields for savekey storage. To paint savekey storage
fields, see Defining Savekey Storage and a Commarea.

To assign screen field edits, choose one of the following:

® Enter fe in the Command field. The APS Edits Field Selection
screen displays, listing all fields defined for your screen. From
there you can select a field for edit specification.

® From the Field Attributes screen, press PF4, or enter fe in the
Command field. The Edit Selection screen displays for that field.
From here you can view, delete, or copy existing edits for your
field, or transfer to a specific edit screen.

See Painting Field Edits for information.

User’s Guide

57

58 Chapter 4 Paint Character Screens

Assign generation
and DC target
parameters

End the session

Print screen
documentation

User’s Guide

28 To assign screen generation parameters for your DC target, enter
pm in the Command field. The Screen Generation Parameters screen
displays with default parameter values. See Setting Parameters for
Generation for details.

29 Choose one of the following to complete your work in the Screen

Painter:

® To save your screen and exit, press PF3 or enter end in the
Command field.

® To save your screen design and remain in the Screen Painter,
enter save in the Command field.

® To exit the Screen Painter without saving your screen design,
enter can or cancel in the Command field.

30 To print a hardcopy report, see the "About APS Reports" topic in
the APS Reference.

Special Considerations

To create a screen quickly, you may want to copy an existing APS
screen and modify it. To do so, use the Create Like function on the
APS Painter Menu.

If APS cannot save your screen, for example, if you don’t have
enough disk space, a screen lets you specify another data set for
storing your screen. Then, before you can access the screen again,
you must copy it back to your project.group.APSSCRN file.

Instead of changing editing options in the profile screen, you can
enter commands in the Command field as follows:

Command
bottom

caps off
caps on
keys off
keys on

Description

Move Command field to the bottom left corner of
the screen.

Restore text to upper/lower case as entered.
Convert text to upper case.
Do not display APS-assigned PF key definitions.

Display APS-assigned PF key definitions at the
bottom of the screen.

Painting a Screen

Command Description

nulls off Fill rows with spaces.

nulls on Clear rows so you can insert data.

top Move the Command field to the top left corner of
the screen.

To display a ruler to identify columns, type cols in the Command
field, place the cursor where you want the ruler to display, and press
Enter. The ruler may overlay painted text. To erase the ruler and
replace any overlayed text, enter reset in the Command field.

APS reserves column 1 for attribute bytes in the generated screen
definition.

I/0 fields can have as many characters as can fit on one row of the
screen.

APS allows a maximum of 500 fields per screen. The ISPF
prototyping environment allows a maximum of 25 1-byte fields out
of the 500 total.

If you use the screen in an ISPF prototype or your DC target is ISPF
Dialog and you need to include an ampersand (&) in a text field:

® Paint the field as it should appear at run time.

® Then leave as many spaces at the right of the row as there are
ampersands in the row.

The Screen Generator generates two ampersands for every one you
paint. Once the screen is online, ISPF deletes the extra ampersands.

If you change the field length for a field with assigned field edits, a
screen asks you if you want to delete, change, or keep the field edits
as they are. Selecting the change option transfers you directly to the
Field Edit facility.

User’s Guide

59

60 Chapter 4 Paint Character Screens

Painting Field Edits

Assign screen field edits following the steps below:

Access the field 1 From your application screen, access the Field Edit Facility in one of
edit facility the following ways:

® Enter fe in the Command field. The Field Selection screen
displays, listing all fields defined for your screen. An asterisk to
the right of a field indicates that edit specifications exist for the
field in that category.

Figure 4-15. Field Selection Screen

COMMAND ===3> SCROLL==> PRB
I - Specify inEut edits . 0 - Specify output edits
U - Specify values or conversions P - Specify an_1ntgrnal.g1cture
§ - Select APS edit menu D - Delete a field's edits
FIELD-HAME LEN HOW COL [INTERNAL IWPUT OUTPUT UALUES
START-BAOWSE-D apg Bey @27 "
SAUEKEY B1h BR7 BL7
5_ LUSTOMER-HO goe ee9 g2¢ *
CUSTOMER-NAME 28 BA9 @58
DRDER-HOD BB6 BlL BBL
CUST-ENTRY-DATE Bed #1668
ORDER-DEL-DUE-D 08 Bl4 B34
DRDER-STATUS B82 #1k ©5H3
MESSAGE 879 824 @82
BOTTOM OF DATA

® From the Field Attributes pop-up screen, press F4, or enter fe in
the Command field. The Edit Selection screen displays a
summary of any edits assigned to that field. An asterisk to the
right of an edit name indicates that edit specifications exist.

User’s Guide

Painting Field Edits

Figure 4-16. Edit Selection Screen

LUMMAND ==» _

SCREEN FIELD HAME
INTERHAL PICTURE

—m e

DATE EDITING

: CUSTOMER-HD

UALUES OR COMUERSIONS ==>

LEH ©B6 ROW @09 COL @27

x

==p»

2 Depending on how you accessed the Field Edit facility in step 1, do
one of the following:

® From the Field Selection screen, transfer to an edit specification
screen by entering one of the options displayed on the screen to
the left of the field name.

® From the Edit Selection screen, enter an s next to the applicable

category.

From either screen you can select several fields at one time; they
process one after another. When the applicable screen displays,
enter values as appropriate; to do so, refer to the topic listed for the
category. Select an option as follows:

Option
Edit Selection

Internal Picture

Input Editing

Description

Display the Edit Selection screen to see a
summary of edits for that field and transfer to
other edit specification screens. This is
available only from the Field Selection screen.

Display the Internal Picture screen to specify
the internal storage format. See "Related
Topics" below later for further information.

Display the Character Input or Numeric Input
screen, depending on whether the internal
picture specification is character or numeric.
The internal picture default type is character.
Assign input field edits on these screens. See
"Related Topics" below for further
information.

User’s Guide

61

62 Chapter 4 Paint Character Screens

Option
Error Processing

Application Edits

Output Editing

Application Edits

Values Or
Conversions

Special Edits

Input and output

editing

User’s Guide

Description

Display the Error Processing screen to specify
error messages and attributes to display when
the data for the field fails input edits. See
"Related Topics" below for further
information.

Display the Application Editing screen to
create your own edit routine to process input
data. See the "Application Field Edit Routines"
topic in the APS Reference.

Display the Character Input or Numeric Input
screen, depending on whether the internal
picture specification is character or numeric.
The internal picture default type is character.
Assign output field edits on these screens. See
the "Field Edits" topic in the APS Reference for
more information.

Display the Application Editing screen to
create your own edit routine to process output
data. See the "Application Field Edit Routines"
topic in the APS Reference for more
information.

Display the Values or Conversion screen to
specify a valid value or range of values for
input data, or conversion values for either
input or output data. See the "Values,
Conversion Values, and Value Ranges" topicin
the APS Reference for more information.

Display the Special Edits screen to assign date
or time specifications. This option is available
only from the Edit Selection window. See the
"Date and Time Field Edits" topic in the APS
Reference for more information.

Display the Character Input or Numeric Input
screen, based on the internal picture
specification, followed by the Character
Output or Numeric Output screen. To do this,
enter io next to a field on the Field Selection
screen. See the "Field Edits" topic in the APS
Reference for more information.

Copy field edits

Delete field edits

Specify global
error messages

Painting Field Edits

3 To copy edits from another field, access the Edit Selection screen for
the field you are copying field edits to, and then enter copy in the
Command field. The Copy Function screen displays. Enter the field
name you are copying edits from; it must be the same length as the
current field. The current field inherits the edits of the copied field,
and loses any prior edits.
4 Delete field edits in one of the following ways:
® To delete all field edits for all fields on the screen, access the
Field Selection screen, and then enter delete all in the
Command field. The Confirm Delete screen displays, where you
verify that you want to delete all field edits.

® To delete all field edits for a specific field, access the Edit
Selection screen for the field, and enter d after the Internal
Picture prompt. The Confirm Delete screen displays, where you
verify the deletion.

® To delete a specific field edit for a specific field, access the Edit
Selection screen for the field, and enter d to the right of the
field edit name. The Confirm Delete screen displays, where you
verify the deletion.

5 Optionally assign a default error message for the screen to display

when the end user enters invalid data as follows:

a

Access the Field Selection screen, and enter pm or parm in the
Command field. The Parm screen displays.

Figure 4-17. Parm Screen

COMMAND ===>
Error message display Field ==> BESSAGE (Required)

Enter global default message For a Field in error below:
> FIELD AT CURSDR IS IM ERADR

Enter global default message for a required field not entered below:
» FIELD AT CURSOR IS REQUIRED

Using TP-ATIR attribute syntax, enter any valid attribute combination belo
> POS+BRT

Note: The above error grncgssing occurs nan if no error processing
is specified at the individual field level.

User’s Guide

63

64 Chapter 4 Paint Character Screens

b On the Parm screen, type the name of the field that displays the
error message.

¢ Enter the text to display when the data does not pass field edits
and enter the text to display when required data is not entered
in the appropriate fields.

d Specify the attribute values for fields that fail input edits; the
default assigns bright and cursor positioning on the field.

You can enter a field-specific error message by selecting the
Error Processing prompt on most field edit screens; see the
"Error Processing Messages" topic in the APS Reference for
information. These messages override the global screen
messages assigned in this step.

Specify bypass 6 To define conditions for bypassing input edits for the screen, press
options Enter on the Parm screen. A subsequent Parm screen for bypassing
edits displays. You can define bypass conditions for one field per
screen; if any of these conditions occur, APS bypasses field edits for
the entire screen. If the field is in a repeated block, APS bypasses
edits for all fields in that row occurrence only.

Figure 4-18. Second Parm Screen

COMMAND ==> _
Enter field name and value(s] to cause screen input edits to be bypassed
Field name ==> FURCTifH [

3

Ualue[s) === ==}
Additional value(s) separated
y commas ==

Enter § next to function keys to cause screen input edits to be bypassed

PFA1 ==> PFA9 ==» PF17 ==>» Panl ==»

PEA2 ==> PE18 ==> PF18 ==> PAB2 ==

PFA3 ==> § PFI1 ==> PF19 ==> CLEAR ==>

PFRG ==> PF12 ==» PF2B ==3» EHTER ==»

PERS ==> PF13 ==> PF21 ==>

PFRG ==» PF14 ==> PF22 ==>

PERE ==> PE1h ==» PE23 ==>

PFOB ==> § PF16 ==» PF24 ==>

Note: If conditions are not specified tu_binass input edits then all

edits must pass before user code will be executed. See RETRY/HORETRY
$TP-ENTRY keywords for accepting screens with input edit errors.

User’s Guide

Exit the Field Edit
facility

Creating and Running a Screen Flow Prototype 65

7 Complete the fields on this screen as follows:

Field Name Specify any field on the screen,
including a field in a repeated block, to
bypass.

Value(s) Specify the value or values that let end

users bypass input edits. Valid COBOL
reserved words are spaces, low-values,
and high-values.

Additional Value(s) Enter as many additional bypass values
that can fit on the line; separate each
value with a comma.

Program Function Keys Type s in the selection field to indicate
which PF keys the end user can press to
bypass the input edits.

8 Choose one of the following to complete your field edits:

To save your entries and return to the previous screen, press F3,
or enter end in the Command field.

® To return to the previous screen without saving any entries,
enter can in the Command field.

Creating and Running a Screen Flow Prototype

Test screen
sequence

Access Scenario
Painter

Before you generate your screens, you can review their design and flow
with the end user in the APS Scenario Painter. Define a sequence of
screens, called a scenario, enter data in those screens, and display the
screens to the end user following the steps below. After step 1, you can
perform most of the steps in any order.

1 Choose one of the following to access the Scenario Painter:

To run an existing prototype, access the Application Painter
screen for your application and enter run scenarioname in the
Command field. The first screen in the prototype displays. Go to
step 6 to run the prototype.

User’s Guide

66

Chapter 4 Paint Character Screens

Define the
prototype

User’s Guide

® To create, modify, or review a scenario prototype definition:

® From the Painter Menu, enter CN in the Type field. Then
enter the name of the scenario in the Entity field or press
Enter to select from a list of scenarios. The prototype
definition you specify displays.

® From the Application Painter, enter CN scenarioname in the
Command field. The prototype definition for your
application displays. If this is a new prototype definition, the
Scenario Painter lists the screens as they appear in your
application definition.

Figure 4-19. |Initial Application Prototype Definition

I m

——— SCENARIQ; TOSCEN --mmmmmmmmmmmmmmmmmmmmmmmmmme COLUMNS AB1

HD ==<> yetitle_ SCAOLL ===> CSA

- -SCREEN- -—--={----- SCREEH TITLE —=-------==-== - USER COMMENT --
10P OF DATA

R R ORI R SR

ER R IR IR ST
=
(=

BOTTOM OF DATA

2

To display the titles that you painted in the Screen Painter, enter
retitle in the Command field. The titles display in the Screen Title
field.

To create the prototype definition to represent screen flow, use the
ISPF I(nsert), D(elete), C(opy), and M(ove) commands to reorder,
insert, and delete screen names until the prototype represents the
scenario you want to test. A prototype definition can include up to
160 screens.

To describe the screen for the end user, enter text in the User
Comments field. For example, a user comment might identify the
varying conditions under which the same screen displays. Initial
Application Prototype Definition shows the definition from
Scenario Prototype Definition, updated with sequence changes,
screen titles, and screen descriptions.

Run the prototype

Creating and Running a Screen Flow Prototype

Figure 4-20. Scenario Prototype Definition

EDIT -—- SCEHARID: TDSCEN --------------mmmmmmm o COLUMHS A81 @
COMMAND ===> SCAOLL ===> LsH
-LINE- -8CREEN- —---------—- SEHE%HPTBELEHiﬁ -------------- USER COMMERT --
ARA1AR TDKE CUSTORER OADER WAIN WERY WERL SELEETS OHLY
gegage TOCH CUSTOMER RECORD MAIHTERRAHCE UPDATE

BEEIAE TOPL PRATS IMULRTOAY LIST

gadags 100K UROER HECORD MAIHTEHAHCE

ABLER TD0T AADER EN8T T0TALS SHMERRY SCALER
gugoss 100 CUSTURER CHOERS INQUIRY HHUKSE OHLY

5

6

To save your prototype definition, enter save in the Command field.
To reset the screen flow to its sequence at the beginning of the
session, enter reset in the Command field.

To run the prototype, choose one of the following:
® From the Scenario Painter, enter run in the Command field.

® From the Application Painter, enter run scenarioname in the
Command field.

The first screen in the scenario definition displays.

To display an line that displays scenario information at the bottom
of the screen, enter num in the top left corner of the screen. To hide
the information line, enter num off.

Figure 4-21. Prototype Information

- EUSTAMER DADER ERIAY SYSTEM
EE APS DEUELOPMENT CENTER
CUSTOMER ORDERS INQUIRY
START BROMSE DATE ====> KKRKKKKK RRRRHRBERHRRRHER
CUSTOMER HD ========== HKKHARK CUSTOMER NAME ===> RERRERRHERRHERARRRAR
ORDER ORDER_ENTRY ORDER DUE ORDER
HUMBER DATE DRTE STATUS
ARAHAR ARARRRAA ARARRRHR i
ARHHRR ARHHRRHH RRHRERAR i
it ARRARA RN RAHRAR AR i
ARAARA ARARRRRA ARRRRRAR b
ARAHAR ARHHRRAH RRRRRHAR i
ARAR AR ARARRAAN RARAARAN i
ARHHHR RRHHRRAH RRHRRHHR i
RRHHRR RRHRRRHA RRHRRKAR i
PE3 = MAIN MEHU PF8 = PAGE FORWARD PFT = PAGE BACKWARD
100y # 6 OF 11 CUSTOMER ORDERS IHQUIRY BROWSE OHLY

User’s Guide

67

68 Chapter 4 Paint Character Screens

In Prototype Information, the information line states:

TDOJ Screen name assigned in Application Painter
6 Sequence number of screen in scenario from
prototype definition

11 Total screens in scenario from prototype
definition

CUSTOMER ORDERS Screen title painted in Screen Painter

INQUIRY

BROWSE ONLY User comment entered in Scenario Painter

8 To display screens consecutively, press Enter repeatedly until all
screens display. If a screen named in your prototype is not yet
painted in the Screen Painter, a message displays that information.

9 To transfer to the Screen Painter to create or modify a screen, enter
edit in the top left corner of the screen.

Demonstrate data 10 To enter data and show data flow between screens, type the data,
flow between followed by a space, in the Command area in the upper left corner
screens of the screen.

Figure 4-22. Entering the Data Command

data_ CHSTHEER ORBER EHTRY SYSTEM
[APS DEUELOPWERT CENTER
CUSTOMER RECORD MAINTEMANCE
FUNCTION ==========) ¥ ((Q-QUERY U-UPDATE A-ADD D-DELETE)

RREHRHRR

AARAAAAAN
bR

EHTER CUSTOMER NUMBER TO QUERY A RECORD

11 Enter data in the I/O fields, as desired. The data you enter replaces
the Xs.

User’s Guide

Creating and Running a Screen Flow Prototype

Figure 4-23. Sample Input Data

FUHCTIOH ==========3 4 ((-0QUERY U-UPDATE A-ADD D-DELETE)
CUSTOMER Hum 91-123

CUSTOMER HAM WallyHare, Inc.

CUSTOMER ADD > 222 Shuttle fue.

CUSTOMER CITY =====> Lape Carnivore, WD

CUSTOMER ZIP ====== > 28052_

CUSTAMER NRDER EHTRY SYSTEM
APS DEVELOPMENT CENTER
CUSTOMER RECORD MAINTENANCE

r\IV

ENTER CUSTOMER HUMBER TO QUERY n RECORD

This data automatically appears in other screens that contain

identically named fields.

Figure 4-24. Passing Data in the Prototype

ENTER FUNCTION ===>

ORDER HO ===> (EHTER TO aUEH? REC.)

CUSTOMER HD ===> 91-123 CUSTOMER HAME ===> HWallyWare, fnc
DRDER-ENTRY-DATE ===> DUE DATE ===> 5
THSTRUCTIONS ===>

act L INE HT? Iag

UAD PART WO HD DESCRIPTION ORDERED BASE PRICE CODE

CHSTOMER BADER ENTRY SYSTEM
APS DEUELOPHERT CENTER
ORDER RECORD MAINTENANCE

3 (D-QUERY U-UPDATE A-ADD D-DELETE]

12 When simulating data flow in your application, type any command,
followed by a space, in the top left corner of the displayed screen:

Command
data

Description

The previous two steps and Entering the Data
Command, Sample Input Data, and Passing Data in
the Prototype illustrate this option.

This option erases the Xs designating I/O fields and
activates each field according to attributes
assigned in the Screen Painter. You can now enter
data in any field; this data automatically displays
in identically named fields on other screens.

User’s Guide

69

70 Chapter 4 Paint Character Screens

Modify the screen
flow sequence

User’s Guide

13

14

Command Description

dataoff Turn off data simulation and display the screen in
its painted format.

read Display the data saved by the most recently
executed SAVE command and execute the DATA
command. You can now enter or modify data in
any field.

save Store the current data entered in this scenario for
use in future prototyping sessions.

To modify the viewing sequence of the screens, type a command,
followed by a space, in the top left corner of the displayed screen.
Command Description

start, first Display the first screen in the prototype. When you
press Enter, the second screen displays, and so on.

last Display the last screen in the prototype.

end, can, quit Terminate the prototype and return to the
invoking screen.

number Display the screen in the position specified in the
prototype definition.

+increment Display the screen before (+) or after (-) the current

-increment screen, according to the prototype definition.

screenname Display the first occurrence of the specified screen

in the prototype definition.

+screenname Display the first occurrence of the screen specified
-screenname after (+) or before (-) the current screen.

After viewing the last screen in the scenario, press Enter to exit the
Scenario Painter.

Modifying Screen Layouts

Modifying Screen Layouts

Once you create a screen, you can easily change its layout. To do so,
follow the procedures below.

Delete a Field or Row

Delete screen fields and rows as follows:

® Write over any field or row using the space bar or other keys.

® Use the Delete key to erase all or part of a field or row.

® Place the cursor anywhere on an I/O field, and press PF6 to delete
the field. Press PF6 again to complete the delete.

® Place the cursor on a text field or space in a row, and press PF6 to

delete the row. Press PF6 again to complete the delete.

Modify a Repeated Record Block

Modify a repeated record block by following these steps:

1 Position the cursor anywhere within the record block and press PF7.
The Repeated Block Menu displays, as shown in Menu for Modifying

a Repeated Block.

Figure 4-25. Menu for Modifying a Repeated Block

---- REPEATED BLOCK MEHU ----
Command ===» _

Select an option below:

STR|| _ 1. Change repeated block...
I 2, Cancel repeated block
T30 C i

CUS ancel and retain all
rows in the block

fif h. Exit

Hl

b

EUSTAOMER DADER ERIAY SYSTEM

WEWT CERTER
ERS TRGUIRY

TORER HAME » HRARERRRERARHRAREARR
BER

RIUS

User’s Guide

71

72 Chapter 4 Paint Character Screens

User’s Guide

2 Select one of the following options by entering its number in the
column preceding the first option listed.

Option Select ...

1

Change repeated
block

Cancel repeated
block

Cancel and retain
all rows in the
block

Exit

To ...

Display the Repeated Block pop-up
to change the number of rows or
occurrences in the record block.

Eliminate the record block and its
repeated rows. The original source
fields remain.

Eliminate the record block, but
retain every source field. The Screen
Painter gives each field a unique
name, and thereafter treats each as
a separate entity.

Exit the screen without changing
the record block. This option is the
same as pressing PF3.

Move or Copy a Field or Row

You can move, and if your site standard allows, copy I/O fields, text
fields, or entire rows, including those from repeated blocks, to any
location on the screen where there is sufficient space. To do so:

1 Position the cursor as follows:

For an 1/O field, place the cursor anywhere on the field and press
PF4 to move or PF5 to copy.

For a text field, mark the boundaries of the text field with the
PF10 key. Press PF10 once to mark either the left- or right-most
character of the text field; then press PF10 again to mark the

opposite side of the field.

For an entire row, place the cursor anywhere on the row, except
on an /O field, and press PF4 to move or PF5 to copy.

For a group of fields in a row, position the cursor on the left- or
right-most field in the group, as follows:

® At the first or last character of a text field

Modifying Screen Layouts

® Anywhere within an I/O field

Press PF10. Move the cursor to the opposite side of the group and
press PF10 again.

Using the arrow keys, position the cursor where you want to move
or copy data. APS inserts the row on that line; any previous data on
that line shifts down accordingly.

Press PF4 to complete the move or PF5 to complete the copy.

Alternatively, move a field to another location on the same row by
placing the cursor in front of the text or I/O field and either deleting
or inserting blank spaces to move the field to the left or right. In this

case, you must set the Profile screen field for Nulls to ON.

5 Alternatively, move or copy text fields by retyping the entry at a
new location and deleting the entry at the old location.

6 To cancel a move or copy at any time, press Enter.

Track Multiple Field Changes

If you add, delete, or modify several fields in the same row at the same
time, the APS Screen Painter may prompt you to identify the names of
some of the fields resulting from your changes. The Screen Field Name

Selection screen displays; the asterisk points to the field in question.

Figure 4-26. Screen Field Name Selection Screen

CUSTAMER DADER ERIRY SYSTEM
APS DEUELOPHERT CERTER
CUSTOWER OADERS IHQUIRY
START DAOWSE DATE ====> HHXRHHER
CHSTOMER HO ==========3 KHERRR CHSTOMER BAME === KRARKRIRARARARARARGR

AADER ORADER EHIRY ORDER DUE ORADER
HURHER DRIE DRiE SIRTUS

RURHRHRARRHRAR HRMRR HNHNHRHRHRAR

Select_an option
This 1s CO-ORDER-HO
2 - This is a_Hew field
3 - Hext available Field k

SCcocoCcoCcICIC T

ARAHRREH AR AR AR AR AR AR R AR R AR AR AR R AR R AR AR AR R AR R AR RN AR E AR

User’s Guide

73

74

Chapter 4 Paint Character Screens

From this screen, select one of the following options by entering its
number in the column preceding the first option listed.

Select... To...

1 Assign the displayed value to the field. In fieldname, the
Screen Painter displays an existing field name that cannot be
assigned with certainty to a screen field.

2 Let the APS Screen Painter assign a default name to the
field. The default name reflects the row and relative position
of the field in that row: for example, A-ROW003-FLD002.

3 Default. If more than one existing field name cannot be
assigned with certainty to a screen field, you can cycle
through those field names by selecting option 3.

Setting Parameters for Generation

Access the Screen
Generation
Parameters screen

User’s Guide

When you are satisfied with your screen designs, you can define the
parameters that the APS Screen Generator uses to generate the screens
for your data communications (DC) target environment. To do so, follow
the steps below. After step 1, you can perform most of the steps in any
order.

1 From the APS Screen Painter, enter pm (parameters) in the
Command field. The Screen Generation Parameters screen displays.
Screen Generation Parameters Screen displays default parameter
values for an application screen.

Assign
parameters

Setting Parameters for Generation

Figure 4-27. Screen Generation Parameters Screen

GEN PAHEL KAHA
UHPRO FLD BOR
KEXTATTR WMODIFBLE

GLOBAL TERT ATTRS: IHTENSITY COLOR

K
-------------------- Cics THRGET s

K

I

APSET HAME 1BLHSE

----------------- ISPF PROTOTYPE SPECIFIC -------------m-—--—-
|
N

--------------------- INS TARGET SPECIFIL -~------n-oooomo o

DEVICE TYPE f32/8.2) URSOR FEEDBACK F (T=YES, F=H

-DOF NAME jﬂQMBP R LOGICAL PAGING i

MID HAME DGR HID DEFRULI URLUES F

MDD NAME TDEIsHO HAR
DSCRA i #ERE" LHBELED SCHEEH F

LINES PER PAGE
TRANCODE: LITERAL 1DCH OPTIONAL FLD NAME
MID SEGMENT ERIT: HUMBERH UECTOR

E
F

3 SYSHSE MESSAGE

E F RUIDED F UHNDERLINE F

LIN
CIF
Lis

s =3

2 To assign or change any values, move the cursor to the applicable
position and type the value. Parameter values of T(rue) and Y(es)
are interchangeable, as are F(alse) and N(o).

3 Change parameter values that affect the screen in any environment,
as desired. Applicable parameters and valid values are:

Parameter
Prt Asm Mac Expn F

T
No Assembler END F

Retain Datanames F

Description and Values

Default. Do not print
expanded assembler macros.

Print macros.

Default. Do not generate an
assembler END statement.

Generate statement.

Default. Do not retain
painted field names as
assembler labels.

Retain field names. Under
BMS or MFS, duplicate or
invalid names can occur due
to the maximum number of
characters that BMS and MFS
allow.

User’s Guide

75

76 Chapter 4 Paint Character Screens

Parameter
Exattr Modifble

Sysmsg Message

Intensity

Color

User’s Guide

Description and Values

F

Default. Do not modify
extended attributes at run
time.

Allow modification at run
time; generate EXTATTR=YES
and extra attribute bytes in
DSECT.

Anything specified in this field has no effect
during prototyping.

NO or blank

YES or
SYSMSG

fieldname

YES,row,
length|YES,
row|YES,,
length

Default. Do not display
system messages.

Display messages on last line
of the screen, if space is
available.

Display messages in
fieldname.

Display message of up to
length characters on
specified row. Row default is
last line of screen. Length
can be from 40 to 70
characters or up to 131
characters for MOD5 screens.

Change the intensity of all text fields.

N Default. Normal
B Bright.

Change the color of all text fields.
NU Neutral

BL Blue

PK Pink

TQ Turquoise

RD Red

GN Green

Specify CICS 4

parameters

Specify ISPF
prototype
parameters

5

Parameter

Blink
Rvideo
Underline

Setting Parameters for Generation

Description and Values
YL Yellow

Set only one field to T(rue) for text fields.
Blinking, reverse video, and underline are
mutually exclusive.

For a CICS target, assign parameters as follows:

Parameter
Associated Trans

Mapset Name

Line

Description and Values

Specify an associated transaction ID; default
is the first four characters of the screen. If
more than one screen begins with the same
four characters, you need to define a unique
transid.

Override an APS-generated mapset name;
maximum seven characters. The default
mapset name reflects the number of
characters in the screen name, as follows:

4-character name: screennameSET

5-, 6-character name: screenname$
7-character name: screenname$; the $
replaces the seventh character

Starting line of the map on the physical
screen; default is 001; value cannot exceed
the screen depth.

For prototyping under ISPF, assign parameters as follows:

Parameter
Global Fld Unpro

Associated Pgm

Description and Values

F Default. Protect all I/0 fields for
prototyping.

T Unprotect all I/0 fields.

Name of the program receiving control from
the screen; default program name is
screenname.

User’s Guide

77

78 Chapter 4 Paint Character Screens

Specify IMS DC 6 For an IMS target, assign parameters as follows:

parameters

Parameter
Device Type

Cursor Feedback

DIF-DOF Name

Opr Logical Paging

MID Name

User’s Guide

Description and Values

Standard device characters for different
model terminals and printers. Defaults
are IBM-recommended device
characters. See your IBM MFS or IMS
installation manual for further details.

F Default. Do not define a field in
the MID as the cursor feedback
field.

T Provide cursor information for
input processing. To hold the
information, APS appends two
halfword binary fields to the screen
record:
screen-CURSOR-ROW and screen-
CURSOR-COL.

Cursor feedback fields do not affect
output cursor positioning.

Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameDF
5-, 6-character name: screenname$
7-, 8-character name: screenname
truncated to 6 characters

F Default. Do not request operator
logical paging.

T Request paging. Enter name of
field that will contain the paging
requests in the Optional FId Name
field.

Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameMI

5-, 6-, 7-character name: screennamel
8-character name: screennamel; the |
replaces the eighth character

Parameter
MID Default Values

MOD Name
MOD Fill Char
DSCA

"Labeled" Screen

Lines Per Page
Trancode: Literal

Optional Fld Name

MID Segment Exit:
Number

Vector

Setting Parameters for Generation

Description and Values

F Default. Do not treat initial values
as default values for fields in the
MFS-generated MID.

T Treat initial values as default
values.

Override APS-generated name. Default
reflects the number of characters in the
screen name, as follows:

4-character name: screennameMO

5-, 6-, 7-character name: screennameO
8-character name: screennameQ; the O
replaces the eighth character

Generate fill characters in the MOD
segment statement. Valid characters are:
--, NULL, PT, C, or 'x’, where x is any
character value.

Override the Default System Control
Area default value of X'00A0’.

F Default. Do not append screen
name to the input message.

T Append the screen name.

If device type is a printer, specify number
of lines to print on a page.

Specify any literal value as the trancode.
Default is the screen name.

Specify fieldname or MFS PFKEY to hold
the trancode or operator logical paging
command. Alternatively, enter *PF and
assign the PF key value on the MFS
Function Keys screen, or *TC and
construct a trancode on the Trancode
Construction screen.

Generate the EXIT parameter on the
MID segment statement with Number as
the exit routine number and Vector as
the exit vector number. Valid values are:

Number: 0 to 127
Vector: 0 to 255

User’s Guide

79

80

Chapter 4 Paint Character Screens

7 To save your parameter selections and exit this screen, press PF3. To
exit without saving your selections, enter cancel in the Command
field.

Note: To learn how to generate an entire application, see Generate the
Application.

Importing BMS Mapsets

Acces the
importer

User’s Guide

The BMS Mapset Importer creates a screen member from an existing
BMS screen description and stores it in APSSCRN.

To access the BMS Mapset Importer, follow these steps:
From the APS Main Menu, select 2, Dictionary Services.
2 Select 1, Importers.
3 Select 4, Screen.
4 Select 1, Import BMS Mapset. The APS Screen Importer panel

appears.

Figure 4-28. BMS Importer Screen

OPTION ===}

1 - Import BMS Mapset
MEMBER ===}

81

5 Define Processing Logic

This chapter contains the following sections:
® Concepts of Processing Logic

® Predefined Program Functions

® Custom Program Functions

® Mapping Screens to Database Fields

® Control Points

Concepts of Processing Logic

Define processing
logic

Eight tasks you
can perform with
Online Express

You complete your application by defining its processing logic using
Online Express, a menu-driven painter that offers a fill-in-the-blanks
approach. Online Express references the information that you have
specified in the other APS painters and importers, and prompts you to
define the processing logic for those specifications. You do the
following to complete your application in Online Express:

® Select predefined program functions. Online Express provides
predefined program function logic, including teleprocessing and
database read and write functions. You simply select the program
function codes that you want.

® Define custom program functions. You can define your own
program functions to supplement the predefined functions. End
users can execute custom functions just as they execute any
predefined function.

® Specify methods for executing functions. You specify the method
by which the end user executes the functions. For example, the end
user can either enter a code in a function field or press a key.

® Map screen fields to database fields. Online Express automatically
displays all screen fields that you have defined in the APS Screen

User’s Guide

82

Chapter 5 Define Processing Logic

Painter, so that you can map them to the appropriate fields in your
database.

Define database access. For each database function that you select,
you define one or more database calls that specify which record or
records to read, and which database actions to perform on them,
such as obtain, modify, store, and erase. This task is described in
Define Database Access.

Customize the predefined functions. You can modify and
supplement the default processing logic of the predefined functions
as follows:

® Add your own logic at predefined locations in your program,
called control points. This task is described in both this chapter
and in Define Database Access.

® Override the default error processing of database calls. This task
is described in Define Database Access.

Define savekey storage. You define savekey storage area(s) to store
record key values during program execution if your program must
do any of the following:

® Update records with the U(pdate), A(dd), and D(elete) program
functions.

® Obtain records sequentially with the N(ext) program function

® Display repeated record blocks that the end user can scroll with
the F(orward) and B(ackward) functions.

® Re-read repeated record blocks so that the end user can update
and delete them with the M(odify) and E(rase) functions

Define Commarea storage. You use a program Commarea to store
any data that your program passes between programs with the
X(CTL), M(SG-SW), or C(all) functions.

User’s Guide

Predefined Program Functions

Online Express provides predefined teleprocessing and database
function logic. You simply select the predefined function codes that you
need.

Teleprocessing
functions

Database
functions

Screen design
dictates how you
use functions

Predefined Program Functions

Teleprocessing (TP) functions transfer screen data and program control
from the current program to another screen or program. The
predefined TP functions include the following:

TP Function
S(end)
M(SG-SW)

X(CTL)
C(all)
C(lear)
E(xit)

Description
Transmits an input/output screen.

Schedules a new program and optionally passes a
screen record or other data record to it.

Transfers control to another program.
Calls a subroutine or performs a CICS LINK.
Moves spaces or low-values to all I/0 fields.
Terminates the program.

Database functions read from and write to your application’s database.
The predefined database functions include the following:

Read Function

Q(uery)

B(ackward)
F(orward)
N(ext)

R(efresh)

Write Function
A(dd)

D(elete)
U(pdate)

Description

Obtains one or more records and displays data on
the screen.

Pages backward through a repeated record block.
Pages forward through a repeated record block.

Retrieves the next sequential record and displays
data; not applicable to SQL.

Re-reads the database when the end user executes
any database write function on one or more
repeated record block rows, and re-displays the
record block to reflect the database updates.

Description
Stores records.
Erases records.
Modifies records.

The screen design dictates which functions act on which fields. When
you painted your screen, you designed it to display data in one of the
following three formats:

One occurrence of data at a time. For example, your screen might
display the name, address, and other information about a particular

User’s Guide

83

84

Chapter 5 Define Processing Logic

User’s Guide

customer, as shown in Screen Displaying One Occurrence of Data. To
guery the record in this example, the end user enters q(uery) in the
Function field and a value in the record key field, Customer Number.
The developer has assigned the S(end) function to the PF3 key so that
the end user can press PF3 to display the Main Menu.

Figure 5-1. Screen Displaying One Occurrence of Data

EUSTOMER DRDER ERTRY SYSTRM
fAPS DEUELOPMERT CERTER
CUSTOMER RECORD MRINTERAHCE

FUBCTINH ==========p ¥ [(-0UERY H-UPRATE A-ADD D-RELETE)
CUSTOME =3 HRRRRRR

CUSTONE ,

LUSTIME

CUSTOHE

CHSTHME Dg

ERTER CUSTOMER RUMBER 10 QUERY & RECORD

PF3 = MRIN WEHI

thtbhbbhnbabbEEEERE R EERE AR EE R EERE A LR RER AL EERE R EERE R L AR BEREY

On such a screen, any function that you define for the program acts on
all fields. You can select any of the following functions:

A(dd) D(elete) N(ext) S(end)
C(all) E(xit) Q(uery) U(pdate)
C(lear) M(SG-SW) R(efresh) X(CTL)

Multiple occurrences of data, displayed in a repeated record block. For
example, your screen might display rows of information about many
items in inventory, as shown in Screen Displaying Multiple Occurrences
of Data. Because this sample program has just one function--query--a
function field is not required. The end user starts the query by entering
a part number in the record key field. The developer has assigned the
F(orward) and B(ackward) functions to the PF8 and PF7 keys so that the
end user can press these keys to scroll through the repeated record
block.

Predefined Program Functions

Figure 5-2. Screen Displaying Multiple Occurrences of Data

CUSTOMER DRADER ERTRY SYSTEM
APS DEUELOPMERT CERTER
PARTS IHUERTORY LIST

EHTER PRRT HUMBER 10 BEEIH HROWSE ====> HERKKHRK
PART HUMBER DESCRIPTIOH HHITS BRASE PRICE B
EhhtRREE FRbh R e R EE I R R A B R R
ARRHARRR RARARRRARRRANE HARKKANKR RRRHRRRHAR
ARRRARRR ARARARARARAAAR HAKARARRR KARARARARA
ARHHARRR AERHHRRAHRRRHE HERHHHHER HRHHERHHER
ARRARRRR HHHHHHHHHHHHHH ARRARRRAR RRRHRRRHAR
RERRHRRR HEHBHAREAERE HEHHREREE HHHRRHHRHE
ARBHERRR FHHHHHHHHHHHHH ARRAHRENE REHHRRSHER
ARHARRRR HRRAHAHARARARR HAHAHARAR HRRRRRRRRR
ARRAHRRR RARRARRRARARAR HERAHHRRR RRRHERR AR
HRRRRRRR ARHRRRARARARAR HRHRRRRRR HRRRRRRRRR
PE3 = BGIH MEWU ~ PEE = PAGE FOHEARD — PE{=PAGE BOCK
AndnRR AR AR AR AR AR AR AR RN AR AR AR AR R AR AR AR AR AR

REHHARHRHRRR AR ANER

THEHSIOHS

Iy

On such a screen, any function that you define for the program acts on
all fields. You can select the same functions that are available for single

occurrences of data, plus the F(orward) a
scrolling through the repeated block.

nd B(ackward) functions for

Both single and multiple occurrences of data. For example, your screen
might display information about a single customer order and a list of
the parts ordered, as shown in Screen Displaying Single and Multiple

Occurrences of Data.

Figure 5-3. Screen Displaying Single and Multiple Occurrences of Data

CUSTOMER DRDER ERTRY SYSTRM
APS DEUELOPHERT CERTER
AADER REEOAD WAIRTENANCE

ERTER FUNETION ===» ® (Q-QUERY U-UPDATE A-ADD

NABER Hi} ===> 393939 {ERTER 10 QUERY REE)

LUS {UMER HU = LUSTOMER HAME ===3

DRBER-LRTRY - Dﬂl[===> HHHHHHHH BUL BRTE ===>

IHSTHUCTIONS === ihbhbbh bbb bbb bbb

ALY LIKE H1?

AL PART RO MO DESCRIPTION NABERED BASE PRIEC
B ARARARAR ARAR SHRARARENAREEE SRARAREE REHERE AR
i HARARRAR ARAR RRRRRARARARARR RARARARR RRRRARARA
f RARARARR ARAAR ARARARARARARAR RARRRRRR RARARRARR
f HHRRHHRE HEHH HERHHERHHERHHE BRHHERHH REHEREHER
f RARARARA RARA ARARARARARARAR KRRRARAR RARKRKRAR

MRIH WEHI PE8 = PRGE FORMAAD PRI = PAGE B

HHHHHHHHHHHHHHHHHHHHHH RRARRBHRHRRRARRRHRHRHRRR AR IR RH

B-DELETE)

P

i
i

X= acxc

User’s Guide

85

86

Chapter 5 Define Processing Logic

If your screen displays both single and multiple occurrences of data, you
might have to define two function fields:

® A primary function field for updating the single occurrence record

® A row function field, if you must update the repeated record block

rows

Use the primary and row function fields to act upon data as follows:

Primary Function Field Functions
Database read functions:

B(ackward)
F(orward)
N(ext)
Q(uery)
R(efresh)

Database write functions:

A(dd)
D(elete)
U(pdate)

Teleprocessing functions:

C(all)
C(lear)
E(xit)
M(SG-SW)
S(end)
X(CTL)
A(dd)
D(elete)
U(pdate)

Data Acted On

All repeated record block row data
All repeated record block row data
All data on the screen
All data on the screen
All data on the screen

Only the single occurrence data
Only the single occurrence data
Only the single occurrence data

All data on the screen
All data on the screen
All data on the screen
All data on the screen
All data on the screen
All data on the screen
A row of the repeated record block
A row of the repeated record block
A row of the repeated record block

Screen Displaying Single and Multiple Occurrences of Data illustrates a
screen displaying both single and multiple occurrences of data--
information about a single customer order and a list of the parts
ordered. The end user starts the query by entering g(uery) in the

User’s Guide

Other processing
for multiple
occurrences of
data

Predefined Program Functions

primary function field and a value in the record key field, Order No.
Data displays in all fields. To update, add to, and delete from:

® The customer order information, the end user enters function codes
in the primary function field, Enter Function

® The parts records in the repeated block, the end user enters
function codes in the row function field, Act.

The developer has assigned the F(orward) and B(ackward) functions to
the PF8 and PF7 keys so that the end user can scroll through the
repeated block.

You might want to process multiple occurrences of data for purposes
other than displaying it in an updateable repeated record block. For
example, you might want to:

® Query asingle record that has multiple values, such as 12 monthly
sub-totals, and insert logic at a control point to move the data to a
non-updateable repeated record block.

® Loop on multiple records and display the data in a non-updateable
repeated record block.

® |loop on arecord and insert logic at a control point to calculate
record totals, and display just the totals in one occurrence of data.

Specifying Predefined Program
Functions

To specify predefined program functions, follow these steps:
1 Ensure that you have done the following:

® Listed the components of your application on the Application
Painter screen.

® Painted your program screens using the APS Screen Painter.

® Generated your program subschema(s) using the APS Database
Importers.

2 Display the Application Painter screen.

User’s Guide

87

88

Chapter 5 Define Processing Logic

Access Online
Express

3 To start defining program functions for your first program, display
the Online Express menu by entering ox in the selection field next to

Specify functions
and function
field(s)

User’s Guide

the program name.

Figure 5-4. Online Express Menu

COMMAND ===» _

PROGRAM: TDOJ SCREEN: TDOJ SUBSCHEMA: TDDB2 DC TARGET: CICS

1 PROGRAM DEFIHITION - Specify program information and functions
2 ALTERNATE FUHCTIONS - Define application and TP Functions
3 PE_KEY FUHCTIONS - Rssign PF key functions .
4 FIELD MAPPING - Wap screen fields tu_grugran_FlElds
9 COHTROL POINTS - Add ggnllcatlon specific logic
6 DATA BASE ACCESS - Specify data base access
1 SAUEKEY DEFIHITION - Specify SRAUEKEY storage requirements
SC APS SCAEEN PAINTER - Invoke APS Screen Painter
P ERPRESS PARMS - Specify Express Parms
COMMAHDE: SAUE - COPY <pame> - GEH - CAH - AUTO - REPORT - ORIH

4 Display the Program Definition screen by selecting Actions Program

Definition, or entering option 1 in the Command field.

Figure 5-5. Program Definition Screen

COMMAND ===>

FUHCTION FIELD ===> function
FUMCTION CODES ===> guadc
(Valid Codes: E=Euery U=Update A=Add D=Delete H=Hext F=Forward B=Backward
=Llear E=Exit)
ROW FUHCTIOH FIELD === row-function

ROW FUNCTION CODES ===> uad
(Valid row codes: U=Update R=Add D=Delete)

(Field where user enters func code)

[Field where user enters row code]

SYSWSG FIELD ===> message (Field where messages are displayed)

5 Specify any of the following:

® All database read and write functions that you want to include

in your program

® A primary function field, if you want the end user to execute the

functions by entering codes in a function field

Predefined Program Functions

® A row function field, if you want the end user to execute
database write functions for repeated record block rows by
entering function codes in a function field

® The C(lear) and E(xit) teleprocessing functions; you define the
other teleprocessing functions--S(end), X(CTL), M(SG-SW), and

C(all)--in step 7

e A field for displaying system messages

® The initial cursor position

To specify the functions and fields above, complete the Program
Definition screen fields as follows:

Field
Function Field

Function Codes

Value

The COBOL name of the primary function
field where the end user enters function
codes to execute program functions.

This field is optional if you define just the
g(uery) or a(dd) function.

If you named this field FUNCTION or
FUNCTION-name when you painted your
screen, Online Express automatically displays
the function field name.

Valid values:

® Database read functions:
® Q(uery)
® N(ext); not applicable for SQL

® F(orward) and B(ackward);
applicable only for repeated record
blocks

® R(efresh)

® Database write functions:

® U(pdate)
® A(dd)
® D(elete)

User’s Guide

89

90 Chapter 5 Define Processing Logic

Specify other
teleprocessing
functions

User’s Guide

6

7

Field

Row Function Field

Row Function Codes

SYSMSG Field

Position Cursor on
Field

Value

® Teleprocessing functions:
® ((lear). Moves spaces to all I/0 fields.
® F(xit)

Note: You can rename these default
function codes with your own codes later in
this procedure.

The COBOL name of the function field
where the end user enters database write
functions that act only on repeated record
block rows.

Valid values:
® U(pdate)
e A(dd)

® D(elete)

The COBOL name of the system message
field. If you named this field SYSMSG when
you painted your screen, Online Express
automatically displays this name.

By default Online Express positions the
cursor on the function field for the non-
repeated record block data.

If you want to override this default with a
different field, do one of the following:

® To use the initial cursor position field
that you specified in the Screen Painter
Field Attributes screen, blank out this
field with spaces.

® Or, specify the override field in this field.

Press PF3 to return to the Online Express Menu.

To specify the S(end), X(CTL), M(SG-SW), or C(all) teleprocessing
functions, select Actions Alternate Functions, or enter option 2 in
the Command field. The Alternate Functions screen displays,

Predefined Program Functions

showing all function codes that you selected on the Program
Definition screen, as illustrated in Program Definition Screen.

Figure 5-6. Alternate Functions Screen

COMMAND ===3>
Program Row In
Input Function HReserved Function or Function Hame [?#Hg
H " IHU[HH H
- ~UPDRTE i
] B «AbD H
B - ~[ELEE H
L - «LLERR N
] - =PORTE-ROU H
A " #AD0-A0k y
] - ~[ELETE-HOW ¥_
Functions: ==Reserved, P=Perform, G=Global code, L=Local _code (E to edit),
A=Alias, §=8Send, H=Hctl, W=Msg-sw, C=Call, $=Inuoke macro

8 Complete the screen fields as follows:

Enter in the Function field any of the predefined teleprocessing
function codes that you need--S(end), X(CTL), M(SG-SW), or
C(all).

Enter the objects of the functions - such as the screen to send or
the program to transfer to -in the Reserved Function or Function
Name field.

Enter in the Program Input field the function code value that
you want the end user to use to execute the function. The value
can be 1-8 alphabetic characters.

Notes:

® To rename any default Program Input code with your own
alternative alias code, see step 10.

® You use the P(erform), G(lobal code), L(ocal code), and $
(invoke macro) codes to define custom functions. See
Defining Custom Program Functions.

User’s Guide

91

92

Chapter 5 Define Processing Logic

Specify how the
end user executes
the functions

Rename the
default function
codes with alias

codes

Assign functions
to function keys

User’s Guide

9

Specify how you want the end user to execute the functions by
choosing one of the following:

® Default. The end user enters a function code in your screen’s
function field(s). The codes are those that you specified on the
Program Definition and Alternate Functions screens.

® To rename the default codes with your own codes, perform
step 10.

® |f you accept this execution method and the default codes,
skip to step 17.

Note: The Enter key is the default function processing key. It causes your
program to test the function code that the end user enters, and execute
the function. To override the Enter key as the default function
processing key, perform step 15.

® The end user presses a function key, such as PF3. To assign one or
more functions to a function key, perform step 12.

® The end user presses a special key, such as a PA key. To assign
one or more functions to a special key, perform step 14.

Note: You can specify any combination of execution methods. For
example, you can assign the E(xit) function to the F3 key, and other
functions to function codes.

10

1

12

To rename any default function code with your own alternative, or
alias, function code, go to a new line on the Alternate Functions
screen and enter the following values in the following fields:

Program Input Function Reserved Function or Function
Name

The new code, up to A(lias) The function whose code you

eight characters are renaming, such as *Query
ors

Press PF3 to return to the Online Express Menu.

To assign any function to a function key, select option 3, PF Key
Functions. The PF Key Functions screen displays, and lets you assign

Predefined Program Functions

functions to all 24 function keys. Initially, only the first 12 keys
appear on the screen; to assign functions to function keys 13
through 24, select Actions List Next 12 PF Keys, or press Enter.

Note: If you defined trancodes for your MFS mapsets, do not assign
functions to function keys.

Figure 5-7. PF Key Functions Screen

COMMAND ===>

Function HReserved Function or Function Hame

PFKEYE1
FKEYE? _
PFKEYE3 i 1DKE
PFKEVHA

PEEvoe

PEKEYH] - ~BRCKHARD
FKE " =Forward_
PFKEYBA Forward
PFKEYAI

FKEYLR

PFKEY1L

PFKEV12

Functions: ==Reserved, P=Perform, G=Global code, L=Local code (E to edit],
$=Send, H=Rctl, M=Msg-sw, C=Call, $=Invoke macro

13 Press PF3 to return to the Online Express Menu.

Assign functions 14 To assign functions to the Clear key and PA keys for a CICS
to CICS special application, select Actions, Special PF Keys, or enter spc in the
keys Command field of the PF Key Functions screen to display the Special
Key Definition screen. Complete the screen fields as follows:

a Enter the teleprocessing function codes that you need in the
Function field next to a key.

b Enter the objects of the functions, such as the screen to send or
the program to transfer to, in the Reserved Function or Function
Name field.

User’s Guide

93

94 Chapter 5 Define Processing Logic

Figure 5-8. Special Key Definition Screen

COMMARD ===>

DEFAULT PROCESSING KEY ===> ENTER

Key Dption Reseruved Function or Function Hame
EHTER ===3 = «PRIMARY-FURLTION,
(CICS ONLY) Rk
CLEAR ===3
PA1 >
PR2 ===)
PA3 ===}
Options: ==Heserved, P=Perform, G=Global code, L=Local code (E to edit],

$=Send, H=Rctl, M=Msg’sw, C=Call, $=invoke macro

Change the 15 To override the Enter key as the default function processing key,
default processing enter the overriding key name, such as clear or pf10, in the Default
key Processing Key field on the Special Key Definition screen. The
processing key causes your program to test the function code that
the end user has entered, and execute the function.

16 Press PF3 to return to the Online Express Menu.

Special Considerations

Clearing screens By default, the C(lear) function clears all /O screen fields with spaces.

with low-values Alternatively, you can clear repeated block row fields with low-values.
To do so, display the Express Parms screen by entering p in the
Command field of any Online Express screen, and change value of the
Clear With Low-Values parameter to Yes.

Custom Program Functions

Tailor your Without leaving Online Express, you can write custom program
programs functions to supplement the predefined functions provided by Online
Express. End users can execute custom functions just as they execute any
predefined function.

User’s Guide

Write local or
global custom
function logic

Select the
function
execution method

Custom Program Functions 95

You can write functions specifically for one program, or for use
throughout your application. A program-specific custom function is
known as a local program stub; a custom function that you use
throughout your application is known as a global program stub.
Alternatively, you can write a function in a macro and invoke the macro
in any program of any application. Stubs and macros are more fully
described below:

Custom Function
Component Description

Local stub Procedure Division and Data Division source that you
write and execute specifically in one program. You
write a local stub using the Specification Painter,
which you access from the Alternate Functions, PF
Key Definitions, or Special Key Definitions screen. A
local stub can consist of a main paragraph, other
paragraphs that the main paragraph performs, and
Data Division source code for the paragraphs.

Global stub Procedure Division source that you can execute in
any program of an application. You write a global
stub using the Program Painter, which you access
from the Application Painter. A global stub can
consist of one or more paragraphs.

Macro Any Customization Facility source that you can
execute in any program of any application. You
write a macro in the USERMACS data set in your user
Project and Group.

Defining Custom Program Functions

To define custom program functions for applications, follow these steps:

1 Depending on how you want the end user to execute the function,
decide which Online Express screen to use, as listed below:

Execution Method Online Express Screen
Entering a function execution code Alternate Functions
Pressing a function key PF Key Functions
Pressing the Clear key or a PA key Special Key Definitions

User’s Guide

96

Chapter 5 Define Processing Logic

Determine
whether to write
a stub or macro

Define local stubs

User’s Guide

Determine whether you want to write your function in a local stub,
global stub, or macro. You can define any one of them to your
program using any of the above screens.

® To define a local stub, perform step 3.
® To define a global stub, perform step 4.

® To define a macro, perform step 5.

To define your custom function in a local stub, follow these steps:

® Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Alternate Complete the screen as follows:

Functions . . .
® Enter a unique function execution

code of up to eight characters in the
Program Input field.

® |eave the Reserved Function or
Function Name field blank.

® Enter e(dit local code) in the Function
field. The Specification Painter screen
displays, where you write the stub
source code.

PF Key Functions Complete this screen as follows:

® |eave the Reserved Function or
Function Name field blank.

® Enter e(dit local code) in the Function
field next to any function key listed
on the screen. The Specification
Painter screen displays, where you
write the stub source code.

Custom Program Functions

Special Key Complete this screen as follows:

Definition ® Leave the Reserved Function or

Function Name field blank.

® Enter e(dit local code) in the Option
field next to any key listed on the
screen. The Specification Painter
screen displays, where you write the
stub source code.

® \Write the local stub as follows:

® To define the main paragraph, enter your COBOL, COBOL/2,
or S-COBOL statements starting in column 12 and continue
onto as many lines as you need. Do not enter a paragraph
name; APS automatically generates one and displays it at the
top of the Specification Painter screen. In the main
paragraph, you can perform additional paragraphs that you
write in the local stub. For information on writing S-COBOL
statements, see the "S-COBOL Structures" topic in the APS
Reference .

® To define an additional paragraph that the main paragraph
performs, enter the APS keyword, PARA, in the KYWD
column (columns 8-11) and the paragraph name starting in
column 12 on the same line. On the following lines, enter
your paragraph statements.

® After all paragraphs, define any Data Division source for the
paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference .

For example:

“KYWD- 12-%----20---%-=2-30---%---240---*----50---*--
st at enent

perform sub- para-nane

para sub-para- nane
st at enent

User’s Guide

98

Chapter 5 Define Processing Logic

Define global

User’s Guide

stubs

01 group-1evel -data-item

05 el enentary-data-item

® When you finish writing the local stub, press PF3 to save it and
return to the previous screen. Note that Online Express displays
the value L(ocal code) in the Function field. To edit the stub,
simply enter e(dit local code) in the Function field.

4 To define your custom function in a global stub, follow these steps:

List the global stub name in your application definition. To do
so, display the Application Painter screen and enter the
following on a separate row anywhere in the definition:

In the Programs field, enter the stub name. The name can
have a maximum of eight characters. The first character must
be alphabetic; others can be alphanumeric or the special
characters @, $, or #.

In the Screens field, enter the value *stub in the Screens field,
to indicate that the stub has no associated screen.

® \Write the global stub using the Program Painter as follows:

To display the Program Painter, enter s next to the stub name
on the Application Painter.

To define a paragraph, enter the PARA keyword in the
KYWD column and your paragraph name in column 12 on
the same line. On the following lines, enter your COBOL,
COBOL/2, or S-COBOL paragraph statements. Do not use any
other APS keywords in the paragraph. For information on
writing S-COBOL statements, see the "S-COBOL Structures"
topic in the APS Reference.

For example:

“KYWD- 12-%----20---%-22-30---%---240---*----50---*--

para para-1-nane

st at enent

Custom Program Functions

para para-2- nane
st at enent

® Press PF3 to save your global stub and return to the Application
Painter.

® Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Alternate Complete this screen as follows:

Functions . . .
® Enter a unique function execution

code of up to eight characters in the
Program Input field.

® Enter g (for global stub) in the
Function field.

® Enter the stub name in the Reserved
Function or Function Name field.

PF Key Functions Complete this screen as follows:

® Enter g (for global stub) in the
Function field next to any function
key listed on the screen.

® Enter the stub name in the Reserved
Function or Function Name field.

Special Key Complete this screen as follows:

Definition . .
® Enter g (for global stub) in the Option

field next to any key listed on the
screen.

® Enter the stub name in the Reserved
Function or Function Name field.

Define macros 5 To define your custom function in a macro, follow these steps:

® Write your macro in the USERMACS data set in your user Project
and Group. See the Customization Facility User’s Guide for rules
on writing macros.

User’s Guide

99

100 Chapter 5 Define Processing Logic

® List the macro name in your application definition. To do so,
display the Application Painter screen and enter the following
on any line above your application’s program names:

® |nthe USERMACS field, enter the name of the USERMACS file
that contains the macro. The name can have a maximum of
eight characters. The first character must be alphabetic;
others can be alphanumeric.

® In the Loc(ation) field, specify the program location where
you plan to invoke the macro. For valid location values, see
Paint the Application Definition.

® Depending on how you want the end user to execute the
function, display either the Alternate Functions, PF Key
Functions, or Special Key Definition screen and complete it as
follows:

Alternate Complete this screen as follows:

Functions . . .
® Enter a unique function execution

code of up to eight characters in the
Program Input field.

® Enter the macro invocation symbol $
in the Function field.

® Enter the macro name in the Reserved
Function or Function Name field.
PF Key Functions Complete this screen as follows:

® Enter the macro invocation symbol $
in the Function field next to any key.

® Enter the macro name in the Reserved
Function or Function Name field.

Special Key Complete this screen as follows:

Definition . .
® Enter the macro invocation symbol $

in the Option field next to any key.

® Enter the macro name in the Reserved
Function or Function Name field.

User’s Guide

Mapping Screens to Database Fields

Mapping Screens to Database Fields

Display the Field
Mapping screen

You must map your screen or screen fields to the appropriate fields in
your database. To help you do so quickly, Online Express displays all
fields that you defined when you painted your screen or screen. You
simply specify each screen field’s corresponding database field, and
indicate whether the screen field is an input field, an output field, or

both.

To map screen fields to your database fields, follow these steps:

1 Ensure that you have done the following:

® Listed the components of your application on the Application
Painter screen.

® Painted your screens using the APS Screen Painter.

® Imported your program subschema(s) using the APS Database
Importers.

2 Select option 4, Field Mapping, from the Online Express Menu to
display the Field Mapping screen. The screen displays all screen
fields that you defined in the Screen Painter. Note that APS prefixes
all field names with their associated screen name.

Figure 5-9. Field Mapping Screen

COMMAND ===

Scree

TD0M-

Line cmds:

»

n Field 17078 Program Field
FUNCTION .

DER-H B CU-ORDER-KO
SAUEKEY-1 o _
CUSTOMER-HO i LO-CUST-HUMBER
USTOMER-HAWE fl H-CUSTORER-BAKE
CUST-ENTRY-DATE B LU-CUSI-ERIHY-DRIE
ORDER-DEL-DUE-D i G- 0RDER-DEL-DUE -
ORDER-DEL-IHSTRH B CO-URDER-DEL-IHSTH
10W-FUNCT Bl _

PART-HO RB1 B BOL-PRAT-KO

| INE-NO RB1 1] (DL -1 1HE- R o
PART-SHORT-DESC ne1 i PH-PRRT-SHORT-DESC
TY-DRDERED RB1 1] ODL-0TY-0RRERER

TY-BASE-PRICE RB1 B UOL-G1Y-HASE-PRICE
AR-CATEGORY RB1 1 BRL-TAR-CATEGOAY_
AUEKEY-2 RB1

E=Field edits, I=Insert, D=Delete [Continuation Lines Only)

User’s Guide

101

102 Chapter 5 Define Processing Logic

Specify whether
fields are
input/output

Specify database
field names

Qualify fields that
belong to
multiple records

User’s Guide

3 Specify whether the screen fields are input, output, or input/output
fields by entering i(nput), o(utput), or b(oth) next to each field in
the 1/0/B column. Leave this column blank for function fields, system
message fields, and savekey fields, because they do not have
corresponding database fields.

4 Enter each screen field's corresponding database field name in the
Program Field column.

Alternatively, to save yourself some typing, copy all the screen field
names to the Program Field column by entering an asterisk (*) in the
Command field. Online Express copies all screen field names--except
function, system message, and savekey fields--without their prefixes, to
the Program Field column. In addition, Online Express enters the value
b(oth) in the I/0/B column for all copied fields. Then, modify the names
as necessary. To add a prefix to some or all fields simultaneously, use the
prefix command.

Enter any of the following prefix command formats in the Command
field:

pre fldprefix Adds fldprefix to fields on all lines

pre fldprefix m n Adds fldprefix to fields from line m through line n
pre fldprefix * n Adds fldprefix to fields from line 1 through line n

pre fldprefix n * Adds fldprefix to fields from line n through the
last line

Special Considerations

® If one of your database fields exists in multiple database records,
you must qualify the field to indicate which record it belongs to. To
do so, insert a line with the i(insert) line command and on the
following line, enter the word of followed by the record name. For

example:
Screen Field I/AdB Program Fi el d
CSI NFO- ORDER- NO B CO ORDER- NO

OF SALES- REC

Clear the screen

Control Points

® To clear some or all of the values you entered, enter the reset
command in any of the following formats in the Command field:

reset Clears values on all lines

resetmn Clears values from line m through line n
reset * n Clears values from line 1 through line n

reset n * Clears values from line n through the last line

Control Points

Use control points
to tailor default
processing logic

Control points for
database calls

Write local or
global custom
processing logic

Without leaving Online Express, you can write and execute custom
processing logic to supplement or override the default logic that Online
Express generates. You execute custom logic at any of several APS-
provided locations in your program, known as program control points.
Control points let you add logic at such locations in the processing
logic as:

® Upon program invocation
® Before sending a screen
e Before evaluating program functions

® Before and after moving records between the database and the
screen

® Before transferring control to another program
® Before terminating the program normally or abnormally

® Other locations, depending on which functions you define for your
program

In addition, you can add processing logic before and after database
calls. For information, seeCustom Logic at Database Call Control Points.

You can write local custom logic specifically for one or more control
points in a program, or global custom logic for use throughout your
application. You execute any local or global logic at any control point.

User’s Guide

103

104 Chapter 5 Define Processing Logic

View contol
points on the
Control Points
screen

User’s Guide

You write local and global logic in any of the following components in
your program or application:

Custom Logic
Component Description

Local stub Procedure Division and Data Division source that you
write and execute specifically in one program. You
write a local stub using the Specification Painter, which
you access from the Control Points screen. A local stub
can consist of a main paragraph, other paragraphs that
the main paragraph performs, and Data Division
source code for the paragraphs.

Global stub Procedure Division source that you can execute in any
program of an application. You write a global stub
using the Program Painter, which you access from the
Application Painter. A global stub can consist of one or
more paragraphs.

Paragraph A Procedure Division paragraph and Data Division
source that you write specifically for one program and
execute at one or more control points. You write a
paragraph in the Specification Painter, which you
access from the Control Points screen.

Macro Customization Facility source that you can execute in
any program of any application. You write a macro in
the USERMACS data set in your user Project and
Group.

The set of control points that might appear in your program is shown
below. Because programs vary, you will see a different subset of control
points from program to program, depending on which functions you
define for them. To view the control points in your program, you display
the Control Points screen. In addition, you can look in your generated
program source to see where the control points occur; APS generates
comments that identify them that you can activate or deactivate. To
activate these comments, set the value of the Control Points Comments
field to yes on the Express Parms screen. To access the Express Parms
screen, enter p in the Command field on the Online Express Menu. The
complete set of control points is as follows:

Control Point Location in Program

After-Receive-Para After entering a program, regardless of
invocation mode.

Control Point
Post-Screen-Read

Transid-Invoked-Para
Program-Invoked-Para

Pre-Term
After-Enter-Check
Pre-Function-Test
Pre-Branch
Ed-Error-Pre-Send

General-Pre-Send

Before-Send-Para
Pre-Screen-To-Rec

Post-Screen-To-Rec

Pre-Rec-To-Screen

Post-Rec-To-Screen

Pre-RB1-Row-To-Rec

Control Points 105

Location in Program

After a screen-invoked program receives its
screen.

After a transid-invoked program is invoked.

When APS displays the screen of a program
invoked by the XCTL or MSG-SW function.

Before APS terminates the program.

After the end user presses the processing key
(the Enter key is the default), and before the
PRE-FUNCTION-TEST paragraph executes.

Before APS evaluates all functions except the
Terminate, or Exit, function.

Before each MSG-SW, XCTL, or Call function
executes.

Before APS send a screen whose field edits
have failed.

After APS checks all functions, and before the
TP-SEND call executes, when invocation mode
is screen-invoked.

Before APS sends the screen, regardless of
invocation mode.

Before APS performs the MOVE-SCREEN-TO-
REC paragraph.

After APS performs the MOVE-SCREEN-TO-
REC paragraph, and the Update or Add
function executes.

Before APS performs the MOVE-REC-TO-
SCREEN paragraph.

After APS performs the MOVE-REC-TO-
SCREEN paragraph, and after the Query
function executes.

Before the Add or Update function executes
for a repeated record block row, and before
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

User’s Guide

106 Chapter 5 Define Processing Logic

User’s Guide

Control Point
Post-RB 1-Row-To-Rec

Pre-Rec-To-RB1-Row

Post-Rec-To-RB 1-Row

Error-Send-And-Quit

Misc-User-Paragraphs

Location in Program

Before the Add or Update function executes
for a repeated record block row, and after
screen fields move to database fields. APS
uses the subscript CTR to reference repeated
block rows.

After the Query or Forward function executes
for a repeated record block row, and before
database fields move to screen fields. APS
uses the subscript CTR to reference repeated
block rows.

After the Query or Forward function executes
for a repeated record block row, and after
database fields move to screen fields. APS
uses the subscipt CTR to reference repeated
block rows.

When a program terminates abnormally, such
as when a database call fails when the
Database Call Tailoring screen’s Abort On
Error parameter is set to y.

A location where you can write and store any
number of paragraphs that you can perform
at any control point in your program. Write
all your paragraphs in one file in this
location.

Inserting Logic at Control Points

To insert your custom logic at control points, follow these steps:

1 From the Online Express menu, display the Control Points screen by
selecting option 5, Control Points.

Decide how to
implement the
control point

Define local stubs

Control Points

Figure 5-10. Control Points Screen

COMMAHD ===3» _
Control Point
AFTER-RECEIVE-PARA
POST-SCREEH-READ
THANSID-INUDKED-PARA

RAM-THUOKED-PARA
RROR-PRE-SEHD

E-SEND-PARA

EHHG
GEHERAL -PRE-SEHD
BEFOR
MISC-USER-PARAGRAPHS

Actions: $=Macro call, P=Perform, E=Global code, L=Local code (E to edit)
2 Determine whether you want to write your custom logic in a local
stub, global stub, macro, or paragraph:
® To define a local stub, perform step 3.
® To define a global stub, perform step 4.
® To define a macro, perform step 5.
[]

To define a paragraph, perform step 6.

To define your control point logic in a local stub, enter e(dit local

code) in the Action field next to the control point where you want
to execute the stub. The Specification Painter displays, where you
write the stub as follows:

a

To define the main paragraph, enter your COBOL, COBOL/2, or
S-COBOL statements starting in column 12 and continue onto as
many lines as you need. Do not enter a paragraph name; APS
automatically generates one and displays it at the top of the
Specification Painter screen. In the main paragraph, you can
perform additional paragraphs that you write in the local stub.
For information on writing S-COBOL statements, see the "S-
COBOL Structures" topic in the APS Reference.

® To define an additional paragraph that the main paragraph
performs, enter the APS keyword, PARA, in the KYWD
column (columns 8-11) and the paragraph name starting in

User’s Guide

107

108 Chapter 5 Define Processing Logic

column 12 on the same line. On the following lines, enter
your paragraph statements.

® After all paragraphs, you can define Data Division source for
the paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference.

For example:

“KYWD- 12-%----20---%-=2-30---*----40---*----50---*--
st at enent

per f or m sub- par a- nanme

para sub-para-name
st at ement

01 group-l evel -data-item
05 elenmentary-data-item

b When you finish writing the local stub, press PF3 to save it and
return to the previous screen. Note that Online Express displays
the value L(ocal code) in the Function field. To edit the stub,
simply enter e(dit local code) in the Function field.

Define global 4 To define your control point logic in a global stub, follow these
stubs steps:

a List the global stub name in your application definition. To do
so, display the Application Painter screen and enter the
following on any line above your application’s program names:

® In the Programs field, enter the stub name. The name can
have a maximum of eight characters. The first character must
be alphabetic; others can be alphanumeric or the special
characters @, $, or #.

User’s Guide

Control Points 109

® |nthe Screens field, enter the value *stub in the Screens field,
to indicate that the stub has no associated screen.

b Write the global stub using the Program Painter as follows:

® To display the Program Painter, enter s next to the stub name
on the Application Painter screen.

® To define a paragraph, enter the PARA keyword in the
KYWD column and your paragraph name in column 12 on
the same line. On the following lines, enter your COBOL,
COBOL/2, or S-COBOL paragraph statements starting in
columns 12. Do not use any other APS keywords in the
paragraph. For information on writing S-COBOL statements,
see the "S-COBOL Structures" topic in the APS Reference.

For example:

-KYWD- 12-*----20---*----30---*----40---*----50---*--
para para-1-nane
st at enent

para para-2- nane
st at enent

¢ Press PF3 to save your global stub and return to the Application
Painter.

d Execute the stub at any control point by entering g(lobal code)
in the Action field next to the control point, and the stub name
in the Exit Name field.

Define macros 5 To define your control point logic in a macro, follow these steps:

a Write your macro in the USERMACS data set in your user Project
and Group. See the Customization Facility User’s Guide for rules
on writing macros.

User’s Guide

110 Chapter 5 Define Processing Logic

Define
paragraphs

User’s Guide

List the macro name in your application definition. To do so,
display the Application Painter screen and enter the following
on any line above your application’s program names:

In the USERMACS field, enter the name of the USERMACS file
that contains the macro. The name can have a maximum of
eight characters. The first character must be alphabetic;
others can be alphanumeric.

In the Loc(ation) field, specify the program location where
you plan to invoke the macro. For valid location values, see
Paint the Application Definition.

Invoke the macro at any control point by entering the macro
invocation symbol $ in the Action field next to the control point,
and the macro file name in the Exit Name field.

6 To define your control point logic in one or more paragraphs, follow
these steps:

a

Write the control point paragraph(s) using the Specification
Painter. To do so, enter e (for edit) next to the Misc-User-
Paragraphs control point on the Control Points screen and write
the paragraphs according to the following rules:

For each paragraph, enter the PARA keyword in the KYWD
column and your paragraph name in column 12 on the same
line. On the following lines, enter your COBOL, COBOL/2, or
S-COBOL paragraph statements starting in column 12. Do not
use any other APS keywords in the paragraph. For
information on writing S-COBOL statements, see the "S-
COBOL Structures" topic in the APS Reference.

After all paragraphs, you can define Data Division source for
the paragraphs, such as data items that the paragraphs
reference. To do so, use APS Data Division keywords. For
information, see the "Keywords for Program and
Specification Painters" topic in the APS Reference.

For example:

“KYWD- 12-%----20---%-22-30---%---240---*----50---*--
para para-nane

St at enent

Control Points 111

perform sub- para-nane

para sub- para-nane
st at enent

01 group-1evel -data-item
05 el enentary-data-item

b When you finish writing the paragraph(s), press PF3 to save it
and return to the previous screen. Note that Online Express
displays the value L(ocal code) in the Action column. To edit the
paragraphs, simply enter e(dit local code) in the Action column.

¢ Perform the paragraph at any control point by entering p in the
Action column next to the control point, and the paragraph
name in the Exit Name column. To pass arguments to the
paragraph, code them next to the paragraph name without
parentheses. For example:

parananme argl arg2 arg3

For more information, see the "TP-PERFORM" topic in the APS
Reference.

User’s Guide

112 Chapter 5 Define Processing Logic

User’s Guide

6 Define Database Access

This chapter contains the following sections:

Concepts of APS Database Access
Defining SQL Database Calls
Defining IMS Database Calls
Defining VSAM Database Calls
Defining IDMS Database Calls
Customized Database Calls

Savekey and Commarea Storage

Concepts of APS Database Access

Database
functions and
actions

An Online Express database call defines which record or records to
read, and which database actions to perform on them. Each database
function that you specify in your program definition has a
corresponding database action that defines the function, as shown

below:

Database

Function Corresponding Database Action
Query Obtain

Update Modify

Add Store

Delete Erase

For example, if your program must query, update, add, and delete a
record, you must define a call to obtain, modify, store, and erase that
record. To do so, you simply enter the action codes o(btain), m(odify),
s(tore), and e(rase) next to the record that Online Express displays.

User’s Guide

113

114 Chapter 6 Define Database Access

Looping on
records

Define inner, or

nested, loops

Define database

User’s Guide

calls

You can obtain multiple occurrences of a record simultaneously by
looping on the record with the I(oop) action code. For example, you
might want to loop on a record to display multiple data items in a
repeated record block, list box, or combination box on your screen.
Alternatively, you might want to loop on a record to calculate field
totals, and display just the calculation results. You can map to your
program screen any fields of any records that you loop. You specify
which fields to map, using the Field Mapping screen.

By default, Online Express considers any call or calls that follow a loop
call to be nested within the loop. That is, these calls execute each time
that the loop executes. To indicate that a call is nested within a loop,
Online Express assigns a nesting level value to the nested call. You can,
however, decrease the nesting level of any call to execute it
independently of the loop.

When you define multiple loops in your program, Online Express
considers the first loop to be an outer loop, and each subsequent loop
to be an inner loop, nested within the previous loop. By default, loops
are progressively nested--that is, the second loop is nested within the
first, and the third loop is nested within the second. As with any nested
call, you can decrease the nesting level of a nested loop to execute it
independently of a loop, or nest it within a different loop.

Define a database call by completing a few Online Express screens that
prompt you to do the following:

® Select which record or records to access.

® Specify the database read and write actions that you want to
perform on the record.

® Qualify the data that you access by specifying field or column
criteria.

Online Express displays a list of all records of the program subschema or
PSB. From that list, you select a record and specify its read and write
actions. For example, to define a call for a record that you want end
users to modify and store, simply specify the obtain, modify, and store
action codes next to that record in the list.

How you use the action codes in Online Express depends on the
structure and methods inherent to your database target. For example,
you can obtain data from multiple IMS records in a path and specify
that end users can modify and store it. Or you can select multiple SQL

Concepts of APS Database Access

tables and loop on them, returning multiple row records that can be
modified, stored, and erased.

Online Express then displays all fields or columns of the record or
records that you select for the call. You specify any field or column
criteria to qualify the data that the call returns. Online Express prompts
you for information appropriate to your selected database target.

Qualify Online Express database calls using methods available to your
database target, as shown below:

Database
IMS

sSQL

VSAM

IDMS

Qualification Method

Qualify on any field, including:
® Key field

® Non-unique search field

® Sequence field

Qualify on multiple fields and conditions using Boolean
operators

Qualify on any column

Qualify on multiple columns and conditions using
Boolean operators

Qualify on multiple columns of multiple tables, using
Union and Join calls

Qualify with Subselect specifications, including SQL
column and scalar functions, and Exists, Group By, and
Having clauses

Qualify on any field, including:
® Primary index

® Partial key field

Qualify on any field, including:

® Address
® CALCkey
* Key

® Non-unique search
® Sequence

User’s Guide

115

116 Chapter 6 Define Database Access

Execution
methods for
database calls

Error processing

Customize
database call
processing

Define a
Commarea

User’s Guide

You should define the calls in the order in which you want to execute
them, but you can rearrange the order and modify any call definition at
any time.

Typically, you define calls that execute when the end user enters a
function code, presses a key. For example, you might want the obtain
action to execute when the end user enters Q, presses F5, or presses the
Enter key.

In addition, you can define calls that execute as a custom program
function. For example, you can automatically execute a call at various
locations in your program, known as control points. Online Express
provides many control points at which you can execute calls.

Online Express generates status flags that you can use to determine
execution errors. Each flag has a default status code, as shown below:

Status Flag Default Status Code
OK-ON-REC N(ormal)
END-ON-REC N(ormal)
NTF-ON-REC E(rror)

DUP-ON-REC E(rror)

VIO-ON-REC E(rror)

While Online Express lets you completely define database calls without
having to code them, you can also extend and customize those calls to
suit your needs. Without leaving Online Express, you can write and
execute custom database call processing logic to supplement or override
the default logic that Online Express generates. You execute custom
logic at any of several APS-provided locations in your program, known
as database call control points. The control points let you add
processing logic before and after a database call, and when calls
execute normally or abnormally.

If you want to override APS error processing routines, you change a
status flag’s status code from Error to Exception, and then write your
own error routines at control points. You can also override the default
error messages with your own messages.

You can define an area in your program to store any data that your
program passes between programs, called a Commarea. You must
define a Commarea if your program passes data with the X(CTL), M(SG-

Define a savekey
storage area

Sample database
calls

Concepts of APS Database Access

SW), or C(all) functions. You do so simply by specifying its size to Online
Express.

You can also define an area in your program to store record key values
during program execution, called savekey storage. You must define
savekey storage if you program must do any of the following:

® Update records with the U(pdate), A(dd), and D(elete) program
functions.

® Obtain records sequentially with the N(ext) program function.

® Display repeated record blocks that the end user can scroll with the
F(orward) and B(ackward) functions.

® Re-read repeated record blocks so that the end user can update and
delete them with the M(odify) and E(rase) functions.

You can store savekey data either in savekey screen fields that you
define in your screen definition, or in the program Commarea.

The Database Access Summary screen provides access to all the screens
that you need to define a call, and displays a summary list of all calls
that you define for a program. Sample Database Access Summary
Screen illustrates four sample SQL database calls.

Figure 6-1. Sample Database Access Summary Screen

IMMAND ===3
Function Action Data Base Record Qualifier HMesting Blk
A1 OHES TDORDR-REC *KEVHUHL]
B2 0 TDCUST-REC =KEYQUAL @
a3 OMESL TDODET-REC =KEYQUAL @ 1
gg 0 TOPART-REL =KEYQUAL -1
A6
[
a8
[
18

=Select (=Qualification T=Tailoring H=Mouve A=After B=Before I=Insert D=Delete
=Union C=Col-sel 0=0rder-by W=Correlation-name Y=Wiew-SQL H=Having-clause

User’s Guide

117

118 Chapter 6 Define Database Access

Note the following about the calls defined above:

® (Call 01 obtains a customer order table record qualified on key field
criteria, as indicated by the Qualifier field value KEYQUAL. The
qualification is satisfied when the end user enters a screen field
value that matches that criteria. The end user can query, update,
delete from, and add to the table, as indicated by the o(btain),
m(odify), e(rase), and s(tore) action codes in the Action field.

® (Call 02 obtains a customer information table record qualified on a
field in the customer order table.

® (Call 03 loops on the detail table of the customer order table,
qualified on the customer order table key field. The end user can
also update, delete from, and add to the table, as indicated by the
m(odify), e(rase), and s(tore) action codes in the Action field. The
records returned by the loop are mapped to a repeated block on the
program screen, as indicated by the value 1 in the Blk (Block) field.

® (Call 04 obtains a part master table record qualified by a field in the
detail table. Because call 04 follows a loop, Online Express assumes
that the call is nested within the loop, as indicated by its Nesting
field value - 1.

Defining SQL Database Calls

Types of SQL calls

Types of call
qualifiers

User’s Guide

You can define SQL database calls to obtain, loop, modify, erase, and
store columns from one or more tables. Specifically, you can define the
following types of SQL calls:

® Basic SQL calls, to access qualified columns of one table.

® Join calls and Union calls, to access qualified columns of multiple
tables.

Online Express lets you specify any of the following SQL call qualifiers:
Select and Subselect statements

® Boolean qualifiers

® SQL column and scalar functions

® Exists and Not Exists clauses

Select the
Database Access
Summary screen

Define the first

call

Defining SQL Database Calls

® Group By and Having clauses

Procedures for defining basic calls, Join calls, and Union calls follow, in
separate sections.

Defining Basic SQL Calls

Follow these steps to define a basic, qualified SQL database call.
Procedures for defining Join and Union calls appear in separate topics,
later in this section.

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Figure 6-2. Database Access Summary Screen

COMMAND ===

Function Action Data Base Record Qualifier Mesting 3

S$=8elect Q=Qualification T=Tailoring W=Moue A=After B=Before I=Insert D=Delet

U=Union C=Col-sel 0=Order-by H=Correlation-name V=View-SQL H=Hawing-clause

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
tables in the program subschema.

User’s Guide

119

120 Chapter 6 Define Database Access

Figure 6-3. Database Record Selection Screen

COMMAND ===> _

Action Data Base Record Sequence Field/Set Mame 1\
TDCUST-REC DE
TDODET-REC DE
TDORDA-REC DE
TOPART-REL DE

Actions: O0=0btain M=Modify E=Erase 8§=Store L=Loop P=Position

Specify action 3 Enter one or more action codes, in any order, in the Action field
codes next to the table that you want to access in the first call. For
example, Specifying Database Action Codes illustrates a simple call
that obtains and loops on table TDODET-REC, as indicated by the
o(btain) and l(oop) action codes next to the table. To allow the end
user to modify, erase from, and store to the table, enter the m, g,
and s action codes as well. To define nested loops, see Nested Loops.

Figure 6-4. Specifying Database Action Codes

COMMAND ===>

fction Data Base Record Sequence Field/Set Name Ty
TDCUST-REC DE

ol_ TDODET-REC DE
TDORDR-RELC DE
TOPART-REC DE

Actions: O=0btain M=Modify E=Erase S=Store L=Loop P=Position

Select columns 4 Press PF3 to display the Column Selection screen, which lists all
columns of the selected table, as shown in Column Selection Screen.

User’s Guide

Defining SQL Database Calls 121

Note that Online Express identifies each index column with an
asterisk in the Index field.

Figure 6-5. Column Selection Screen

COMMAND ===} _ SCROLL ===> PAG
Record: TDODET-REC Select ===> (A=A11, H=Mone
Column name Cobol name Index
ODL_PART_MD ODL-PART-HO h
0DL_ORDER_ND 0DL-ORDER-NO -
ODL_LINE_ND ODL-LINE-HD
0DL_QTY_ORDERED 0DL-QTY-0DRDERED

0DL_QTY_BASE PRICE ODL-QTY-BASE-PRICE
UDL_TAX_CATELORY ODL-TAX-CATEGORY
ODL_BACKORDER_FLAG ODL-BACKORDER-FLAG

¥Rk R R ¥ ¥

Line commands: S=Select, D=Delete, ?=Column Info.

5 Select the columns for the call by entering s in the selection field
next to each column that you want to include. Alternatively, enter
d(elete) next to each column that you want to exclude. To select all
columns, enter a(ll) in the Select field at the top of the screen. To
display the definition of any column, enter ? in the selection field
next to it.

Update the 6 Press PF3 to display the Column Selection Update screen, where you
column list see the list of columns that you selected for the call, as shown in
Column Selection Update Screen.

User’s Guide

122 Chapter 6 Define Database Access

Figure 6-6. Column Selection Update Screen

COMMAND ===> SCROLL ===> PAG
Record: TDODET-REC Distinct ===> WO (YES or HO)

Function Column name Cobol name Ind
ODL_PART_NO ODL-PART-ND -
DDL_LINE_ND ODL-LINE-ND

min_ DDL_QTY_DRDERED NDL-QTY-ORDERED
DDL_QTY BASE PRICE 0DL-UTY-BASE-PRICE
DDL_BACKORDER_FLAG DDL-BACKDRDER-FLAG

Line commands: M=Moue, A=After, B=Before, D=Delete, I=Insert, R=Repeat

F=Functions, ?=Column info

Add, exclude, and 7
rearrange the
order of columns

Override COBOL
host variables

User’s Guide

Do any of the following:

To add a column, insert a line with the i(nsert) line command
and enter the column name in the Column Name field.
Alternatively, insert a line, enter listcol in the Command field to
display a column list, and select a column from the list. Then
press PF3 to return to the Column Selection Update screen.

To exclude a column, enter d(elete) in the selection field next to
it.

To rearrange the order of the columns, use the line commands
m(ove), a(fter), and b(efore).

To override the default COBOL host variables with Working-
Storage fields or literals, simply overtype the host variable
names in the COBOL Name field. Doing so enables you to
change the destination for columns that the call obtains and to
update columns with literal values. These changes affect the
obtain, modify, and store actions as follows:

Override Value Effect

Working-Storage Obtain action: Obtains the column value
field into the Working-Storage field.

Modify and Store actions: Updates the
column with the Working-Storage field
value.

Obtain literal
values from a
column

Assign SQL
functions

Defining SQL Database Calls

Override Value Effect

Literal Obtain action: Obtains the column value
into the default COBOL host variable.

Modify and Store actions: Updates the
column with the literal value.

To obtain a literal value from a column, overtype a column
name with the literal, or insert a new line and enter the literal.

To assign a SQL column or scalar function to one or more
columns, enter the function name in the Function field next to
the column(s), as shown in Column Selection Update Screen.
Alternatively, enter f(unction) in the selection field next to the
column to display a function list, select one from it, and press
PF3 to return to the Column Selection Update screen. When you
assign a column function--AVG, COUNT, MAX, MIN, or SUM--to
at least one, but not all, columns of a loop call, Online Express
generates a Group By clause. The Group By clause lists all other
columns, called grouping columns, in the order in which they
appear on the Column Selection Update screen. You can
rearrange the order using the line commands m(ove), a(fter),
and b(efore). To define an optional Having clause to specify
conditions that the group must satisfy, see step 11.

8 Press PF3 to display the SQL Qualification Specification screen,
where you qualify the columns that you selected, as shown in SQL
Qualification Specification Screen.

User’s Guide

123

124 Chapter 6 Define Database Access

Qualify columns

Specify Subselect
clauses

User’s Guide

Figure 6-7. SQL Qualification Specification Screen

IMHAND ===» SCROLL ===» PAGE
Record: TDODET-REC
Corr Column Mame Operator Value(s) Bool
ODL_PART_ND = tdot-part-no and
odl_part_no in subselect_
ODL_L INE_HD
opL_| RED

Type "LISTCOL' to list all columns from selected records in this call
LINE CHDS: ?=Infa H=Houe A=After B=Before D=Delete R=Repeat

TY_DRDE
DDL_HIQ_BHSE_FRIEE
ODL_BACKORDER_FLRE

I=Insert S=Subselect

9 Qualify one or more columns by entering an operator and a
qualification value next to the column(s). A qualification value can
be a:

COBOL host variable; APS automatically generates the colon
prefix.

Working-Storage field.
Number.
Literal string enclosed in quotation marks or apostrophes.

Subselect clause. To specify a Subselect, see below.

To specify a subselect clause for a column, enter a value in the
Operator field, and subselect in the Value(s) field to display the
Subselect Specification screen, as shown in See Subselect
Specification Screen. Alternatively, enter s(ubselect) in the selection
field next to the column.

Use Boolean
qualifiers

Defining SQL Database Calls

Figure 6-8. Subselect Specification Screen

COMMAND ===> SCROLL ===» PAE
WHERE ODL_PART_NOD IN

FUMCTION: COLUMN: pm_part_no ["ALL” or 1 Column)
FROM RECORD: WHERE QUALIFICATION: (OPTIOMAL)
_ TDCUST-REC COLUMN
_ TDODET-REC OPER
_ TDORDR-REC VALUE

s IDPART-REC

LINE COMMANDS: S=Select ?=Column Info

On the Subselect Specification screen, perform the following steps:

a

Select a record for the subselect by entering s next to the record
in the From Record field.

In the Column field, enter the column name for the subselect.
Alternatively, enter s(elect) in the selection field next to the
Column field to display a column list, select a column from the
list, and press Enter to return to the Subselect Specification
screen.

In the Function field, you can enter a SQL function.
Alternatively, enter s(elect) in the selection field next to the
Function field to display a function list, select a function from it,
and press PF3 to return to the Subselect Specification screen.

In the Where Qualification field, you can qualify the subselect
by entering values next to the Column, Oper, and Value fields.

Press Enter to preview the subselect clause as it will appear
when generated. Then press PF3 to return to the SQL
Qualification Specification screen.

To specify multiple conditions or value ranges for the call, enter the
Boolean qualifier AND or OR in the Bool field. When you specify

User’s Guide

125

126 Chapter 6 Define Database Access

two or more Boolean qualifiers in a call, you can group the
qualification within parentheses as shown below:

Figure 6-9. Grouping Qualifiers

Corr Column Mame Operator Value(s) Be
ODL_PART_ND > 999 Ak

{ 0DL_QTY BASE PRICE > 99 or
ODL_BACKDRDER_FLAG = t 1

Use the OF If your qualification value is an elementary-level COBOL field that
operator belongs to multiple group-level fields, insert a line and enter the OF
operator and the group-level field to which it belongs. For example:

Figure 6-10. Using the OF Qualifier

Corr Column Name Dperator Value(s) Ba
ODL_PART_HO = tdot-part-no
of pm-part-rec_
Use Exists and Not To specify an Exists clause, first insert a blank line below the call by
Exists clauses entering i(nsert) in the selection field next to it. Leave the Column

Name field blank, enter exists or not exists in the Operator field,
and enter subselect in the Value field. Online Express displays the
Subselect Specification screen, where you specify your Exists clause
subselect criteria. Specify only one Exists clause per qualification.
Press PF3 to return to the SQL Qualification Specification screen.

10 Press PF3 to exit the SQL Qualification Specification screen. APS
displays one of the following screens, depending on the contents of

your call:

If your call contains ... APS displays the ...

No loop Database Access Summary
screen. The call definition is
complete.

Loop with no Group By columns Order By Columns screen.
Perform step 12.

Loop with Group By columns SQL Having Clause Specification
screen. Perform step 11.

User’s Guide

Define Having
clauses

Order the
columns

Defining SQL Database Calls

11 You can define a Having clause to qualify the Group By columns and

columns to which you have assigned column functions in steps 7 or
9. To do so, select H(aving) on the Database Access Summary screen.
The Having Clause Specification screen displays, as shown in
Grouping Qualifiers, showing all such columns. Qualify them just as
you qualify any column. In addition, you can assign column
functions to a Having clause as follows:

® To assign the COUNT column function to test the number of
rows found for the Group By columns, insert a line and enter *
in the Column Name field, and appropriate values in the
Operator and Value(s) fields. APS automatically displays the
function name abbreviation CNT next to the clause.

® To assign any other column function, enter f(unction) in the
selection field next to the clause to display a function list, and
select a function from it.

After you define a Having clause, press PF3 to display the Order By
Columns screen.

Figure 6-11. SQL Having Clause Specification Screen

JMMAND ===> SCROLL === PAGE
Recard: TDODET-REC
Corr Column Mame Operataor Value(s) Bool
ODL_PART_ND
ODL_LINE_KO
HIN ODL_QTY_ORDERED > 1 and_

Tupe "LISTCOL® to list all columns from selected records in this call
LINE CHDS: ?=Info W=Houe A=After B=Before D=Delete R=Repeat

ODL_QTY BASE PRICE > 99
0DL_BACKORDER_FLAG

=Ilnsert $=Subselect F=Function

12 On the Order By Columns screen, specify the order in which the call

obtains and displays the columns, as shown in Using the OF
Qualifier. APS identifies the index column that you have selected, by
displaying an asterisk in the Index field. If your subschema contains
multiple indexes, APS displays only the last one listed in the
subschema. To add any index or non-index columns to the list, insert
a line and enter the column names. Alternatively, to display a

User’s Guide

127

128 Chapter 6 Define Database Access

User’s Guide

column selection list, enter listcol in the Command field and select

columns from it.

® If your call includes the modify or erase
must be unique.

action codes, the index

® To limit the number of rows that a loop call obtains, specify that

number in the Optimize field.

Figure 6-12. Order By Columns Screen

COMHAWD ===
Record: TDODET-REC Loop max ===>
Optimize For ===>
Column name Seq Index

0DL_PART_ND f *
od]l_qty_ordered_

Line commands: M=Move, A=After, D=Defore, D=Delete,

SCRAOLL ===» PRE
{Optional)
I=Insert

13 Press PF3 to display the Database Access Summary screen. Your call

definition is complete.

Figure 6-13. Database Access Summary Screen

COMMAND ===>
Data Base Record

TDODET-REC

Function Action Jualifier

~BOOLEAN

§=8elect Q=Qualification T=Tailoring M=Move A=AFter B=Before

U=lnion C=Col-sel 0O=0rder-by M=Correlation-name V=View-SQL H=Hauing-clause

Nesting H

I=Insert D=Delet

Defining SQL Database Calls

Preview and test 14 You can preview the call definition as it will appear when
the call generated, and test execute the call using SPUFI, the external
interactive facility. To do so, follow these steps:

® On the Database Access Summary screen, preview the
generated call definition by entering v(iew) in the selection field
next to the call. The SQL Command Review screen displays, as
shown in Order By Columns Screen. Note that the call is shown
in the context of your program; several lines of your program
source code precede the call as comments.

Figure 6-14. SQL Command Review Screen

COMMAND ===3> _ SCROLL ===> PAG
TOP OF DATA

== TDODET-B1-READLOOP
== IF OK-TO-PROCEED
== EEEE S0L DECLARE PXA1 CURSOR FOR
UDL PART_ND,
0DL_LINE_NO,
H[HTHDL UTY ORDERED),
0DL Hlv BASE_PRICE,
0DL_HACKORDER_FLAG™
FROM TDODET
WHERE
ODL_PART_NO = :TDOT-PART-NO AND
UD%LEEHT NO IN

FROM TDPART)
GROUP BY

ODL_PART_NO,
ODL_LINE_NOD,

® Replace the call’s host variables with any literal values, because
SPUFI cannot use host variables.

® Enter save in the Command field to display the SQL Prototype
screen.

® Select option 1, Save SQL, to save the generated call.
® To access SPUFI, select option 3, Invoke XDBSQL or SPUFI.

15 To define subsequent calls for a program, repeat the above steps. To
modify any call definition, display the Database Access Summary
screen and select the appropriate options displayed at the bottom
of the screen. For example, to modify a call’s qualification, enter the
g (ualification) command in the selection field next to the call to
display the SQL Qualification Specification screen.

User’s Guide

129

130 Chapter 6 Define Database Access

16 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

® Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

® Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

® Delete a call by typing d (delete) next to the call.

Defining Join Calls

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

2 Entersin the selection field next to a new call number. The
Database Record Selection screen displays, listing all tables in the
program subschema.

3 Select up to 16 tables for the Join by entering the o(btain) action
code and any other action codes next to the tables.

4 Press PF3 to display the Correlation Names screen, which shows
default correlation names for each selected table. To override the
default correlation names, simply overtype them. To reset the
default names, enter reset in the Command field.

User’s Guide

Defining SQL Database Calls 131

Figure 6-15. Correlation Names Screen

COMMAKD ===
Correlation
Name Record Hame
A TDCUST-REC
B TDORDA-REC

Enter CORRELATION NAME or PF3 to use the defaults

5 Press PF3 to display the Column Selection screen.

6 Perform steps 5through 16 in Defining Basic SQL Calls. Your Join call
definition is complete, as shown in Database Access Summary
Screen.

Figure 6-16. Database Access Summary Screen

COMMAND ===>

Function Action Data Base Record Qualifier Mesting B

A1 s TN e =BOOLEAN
oL TDCUST-REC
oL TDORDA-AEC

S=Select (=Qualification T=Tailoring M=Move A=After B=Before I=Insert D=Delet
U=lnion C=Col-sel D=0rder-by H=Correlation-name ¥Y=VYiew-S)L H=Having-clause

User’s Guide

132 Chapter 6 Define Database Access

Select the
Database Access
Summary screen

Define the first
Select statement

Define Having
clauses

User’s Guide

Defining Union Calls

1

Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

To define the first select statement of the Union, enter u(nion) next
to a new call number on the Database Access Summary screen. APS
displays the Database Record Selection screen.

Perform steps 3 through 9 in Defining Basic SQL Calls.

® Instead of selecting just one table on the Database Record
Selection screen, select up to 16 tables for the Join by entering
the o(btain) action code and any other action codes next to
them.

® APS displays the Correlation Names screen, which contains a
default correlation name for each selected table. To override
the names, simply overtype them. To reset the default names,
enter reset in the Command field. Press PF3 to display the
Column Selection screen.

Press PF3 to exit the SQL Qualification Specification screen. APS
displays one of the following screens, depending on whether your
call contains Group By columns:

To define a Join within a Union, follow these steps:

If your call contains ... APS displays the ...

Group By columns SQL Having Clause Specification
screen. Perform step 5.

No Group By columns Union Summary screen. Perform
step 6.

You can define a Having clause to qualify the Group By columns and
columns to which you have assigned column functions in steps 7 or 9
inDefining Basic SQL Calls. The Having Clause Specification screen,
shown in Correlation Names Screen, displays all such columns.
Qualify them just as you qualify any column. In addition, you can
assign column functions to a Having clause as follows:

® To assign the COUNT column function to test the number of
rows found for the Group By columns, insert a line and enter *
in the Column Name field, and appropriate values in the

Defining SQL Dat

Operator and Value(s) fields. APS automatically displ
function name abbreviation CNT next to the clause.

abase Calls

ays the

® To assign any other column function, enter f(unction) in the
selection field next to the clause to display a function list, and

select a function from it.

Figure 6-17. SQL Having Clause Specification Screen

COMMAND ===> SCROLL === L3R
Record: === JOIH ===
Corr Column Hame Operator Value(s) Bo
MR DDLOTVORDERED ¢ W Ak
"R

Type "LISTCOL® to list all columns from selected records in this call

LINE CMDS: 7=Info M=Move A=After ~ B=Before D=Delete H=Repeat
=Insert §=Subselect F=Function

6 After you define a Having clause, press PF3 to display th

e Union

Summary Menu. The Menu displays the first Select statement that
you just defined for the Union, as shown in Union Summary Menu.

Figure 6-18. Union Summary Menu

COMMAKD === SCROLL ===> PAE
UMION or UWIOW ALL: UMIOMW {A=ALL}
Select Literal Number of
stmt id Data base record columns Qualifier
i3] TDCUST-REC 2 ®KEYQUAL
5 B2

S=Record selection, (=Qualification, C=Column selection, N=Correlation name
D=Delete ,I=Insert, M=Move, R=After, B=Before

User’s Guide

133

134 Chapter 6 Define Database Access

Define the next
Select statement

Pad the Select
statement
columns

User’s Guide

On the Union Summary Menu, define the next Select statement by
entering s in the selection field next to Select Stmt 02. APS displays
the Database Record Selection screen. Repeat steps 3 through 6
above to define as many Select statements as you need for the
Union. Online Express returns all column data to the host variables
of the first Select statement.

After you define all the Select statements, check the Number of
Columns field to see whether each statement has an equal number
of columns. If they do not, do the following:

Ensure that the statement with the greatest number of columns
is the first statement in the list. The other statements can be in
any order. Remember that Online Express returns all column
data to the host variables of the first Select statement.

Ensure that the columns of each Select statement correspond to
each other properly. If the last column in the first statement has
no corresponding column, Online Express automatically pads
the omitted column(s) with an appropriate value--either a blank
character, a zero, DATE, TIME, or TIMESTAMP.

For example, Online Express pads the third column of
statement 2, below:

Stmt 1 Column 1 Column 2 Column 3
Stmt 2 Column 1 Column 2
Stmt 3 Column 1 Column 2 Column 3

If any column except the last column in the first statement has
no corresponding column, you must pad the omitted column(s)
on the Column Selection Update screen. For example, you must
pad the second column of statement 2, below:

Stmt 1 Column 1 Column 2 Column 3
Stmt 2 Column 1 Column 3
Stmt 3 Column 1 Column 2 Column 3

To pad any column, enter c(olumn selection) next to the Select
statement to display the Column Selection Update screen. Insert
a line between the appropriate columns and enter * in the
Column Name field. Online Express pads the column with an
appropriate value.

Defining SQL Database Calls

Ensure matching 9 After you define all the Select statements for the Union, press PF3
columns on the Union Summary Menu. If each column’s corresponding
column(s) match in data type and length, APS displays the Order By
Columns screen; perform step 12. If any columns are mismatched,
APS displays the mismatched columns on the Union Columns Cross
Reference screen.

10 On the Union Columns Cross Reference screen, examine the data
type and length of each column to find the error. Note which
columns do not match, and press PF3 to return to the Union
Summary Menu.

11 To correct the mismatch, enter c(olumn selection) in the selection
field next to the Select statement that contains the mismatch. APS
displays the Column Selection Update screen, where you can make
the necessary changes. Then press PF3 to return to the Union
Summary screen to ensure that the columns match now, and press
PF3 to display the Order By Columns screen.

Order the 12 Specify the order in which the call obtains and displays the columns,
columns as described in step 12 in Defining Basic SQL Calls.

13 Press PF3 to display the Database Access Summary screen. Your
Union call definition is complete.

Figure 6-19. Database Access Summary Menu

COMMAND ===> _
Function Action Data Base Record Qualifier Hesting B
L)1 LD TDCUST-REC =KEYQUAL @
wmw [INION s

) L0 TDORDA-REC =KEYQUAL

3

b

a5

B6

a7

ag

a9

[}

1

2

3
S$=Select Q=Qualification T=Tailoring M=Moue A=After B=Before I=Insert D=Delet
U=Union C=Col-sel D=Order-by W=Correlation-name V=View-S0L H=Hawing-clause

Preview and test 14 To preview and test the call, see step 14 in Defining Basic SQL Calls.
the call

User’s Guide

135

136 Chapter 6 Define Database Access

Special Considerations

While Online Express lets you completely define database calls
without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns a 1 in the Blk
(Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

You can use COUNT(*) in Online Express. You code a COUNT(*) as
follows:

a Create a database call in Online Express.

b From the database call summary type Cin the line command to
access the column selection.

¢ Insert aline with I’ in the line command field.

d Under Function type COUNT; under Column Name type a
asterisk (*); under Cobol Name type the name of the working
storage field to receive the count, for example WS-COUNT.

e When you generate the COBOL you get SQL similar to the
following:

SELECT COUNT(*) FROM TABLEA | NTO WS- COUNT.

Defining IMS Database Calls

Using IMS
database calls

User’s Guide

You can define IMS database calls to obtain, loop, modify, erase, and
store any record. For example, you can obtain a parent record and loop
on its child records to obtain multiple records that the end user can

modify, erase, and store. Online Express stores a child record for the
parent record that is currently obtained when the store action executes.

Select the
Database Access
Summary screen

Define the first
call

Defining IMS Database Calls

Follow these steps to define an IMS database call for any record:

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Figure 6-20. Database Access Summary Screen

COMMAND ===»

Function Action Data Base Record

Qualifier Mesting

5=Select (=Qualification T=Tailoring M=Mouve A=After B=Before I=Insert D=Delete

2 To define the first call, enter s in the selection field next to call
number 01. The Database Record Selection screen displays, listing all
records in the program subschema. IMS parent and child records
display, showing their parent/child relationships. Child records
appear indented from their parents, as shown in Database Record

Selection Screen.

Figure 6-21. Database Record Selection Screen

COMHAND ===3 _
Action Data Base Record
TICUST-REC
TIORDR-REC
TIODET-REC
TIPART-REC
Aictions: 0O=0btain M=Modify E=Erase S§=Store

Sequence Field/Set Mame

CH-CUSTOMER-ND
CO-0ORDER-ND

PH-PART-ND

L=Loop P=Position

Ty

User’s Guide

137

138 Chapter 6 Define Database Access

Specify actions

Obtain a child
record

Qualify the record

User’s Guide

3

Enter one or more action codes, in any order, in the Action field
next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on a
parent record and allows the end user to modify, erase, and store it,
as indicated by the o, I, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.

Figure 6-22. Specifying Database Action Codes

COMMAND ===
Action Data Base Record Sequence Field/Set Mame Typ
TICUST-REC CH-CUSTOMER-HO DLl
olmes_ TIOADA-REC CO-0RDEA-HD DLl
TIODET-REC
TIPART-REC PH-PART-ND DL
4 To obtain a child record of the parent that you just obtained, define

another call to position the database pointer on the parent record
and obtain the child. To do so, enter the p(osition) action code next
to the parent record, and the o(btain) action code next to the child.
To loop on the child, also enter the I(oop) action next to the parent.
For example, to position on TIORDR-REC and loop on TIODET-REC,
enter the p(osition) and I(oop) action codes next to TIORDR-REC,
and the o(btain) action code next to TIODET-REC, as shown in
Positioning on a Parent Record to Obtain and Loop on Its Child.

In addition, you can enter the m(odify), e(rase), and s(tore) action
codes next to the child record if you want the end user to be able to
perform those actions against it.

Figure 6-23. Positioning on a Parent Record to Obtain and Loop on Its

Child
COMMAND ===>
Action Data Base Record Segquence Field/Set Name Typ
TICUST-REC CH-CUSTOMER-NO DLI
ol TIOADA-AEC CO-0RDER-ND DLI
omes_ TIODET-REC
TIPART-REC PH-PART-ND DLI
5 From the current Database Record Selection screen, enter s in the

selection field next to the record that you want to obtain. The

Defining IMS Database Calls 139

Database Qualification screen displays, listing all fields of the
selected record, as shown in Database Qualification Screen.

Figure 6-24. Database Qualification Screen

COMMAND ===

RECORD: TIODRDR-REC ACTIONS: OMES

Field Name Ty Op Value Len Bool
CO-0DRDER-STATUS SR ARAA2
CO-CUST-HUMBER SR AARAG
CO-CUST-ENTRY-DATE SR LLLLTS
CO-0RDER-DEL-DUE-D SAH LLLL I
CO-0ADER-DEL-DUE-W Sh ABAR2
CO-ORDER-DEL-INSTR SR BAB2A
CO-0DRDER-DRIGIN-CD S AAHA2
CO-0ORDER-ND KY BABAG

ine cmds: [I=Insert, RA=Aepeat, D=Delete

6 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be a COBOL screen field, Working-Storage field, a number, or a
literal enclosed in quotes or apostrophes. To specify multiple
conditions or value ranges for the call, enter the Boolean qualifier
AND or OR. To let you specify Boolean qualification for a key field,
APS copies the key field onto the next line. You can qualify the
following types of fields described below. The field type for the
field displays in the Ty(pe) field on the screen.

Field Type Description

KY Key field.

SQ Sequence field of a child record’s index set.
SR Non-unique search field.

For example, in Qualifying a Record below, note that the call is
qualified using Boolean qualification on three fields.

User’s Guide

140 Chapter 6 Define Database Access

Save and review
the specifications

User’s Guide

Figure 6-25. Qualifying a Record

COMMAND ===>» _

RECORD: TIORDR-REC ACTIONS: 0

Field Hame Ty Op Ualue Len Hool
CO-DADER-STATUS SR = T BERED AND
CO-CUST-HUMBER SR> B HHHHAA BHD
CO-CUST-ENTRY-DATE SA nBRsG
CO-DRDER-DEL-DUE-D SR BBABA
CO-0RDER-DEL-DUE-W SA aanaz
C0-DRDER-DEL-IHSTR SR BBAZH
CO-DRDER-ORIGIN-CD SA aaae2
0-0RDER-HO KY >= TINK¥-ORDER-RO ABAARG AKHD
CD-0RDER-HD KY <= 9999 [@ aBdde

7

If your qualification value is a record field that must reference
another field at a higher level in the hierarchy, insert a line and
specify the OF operator in the Op field and the higher-level field in
the Value field.

When you finish qualifying the record, save your specifications.

View a summary of the call that you just defined by pressing PF3
twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TIORDR-REC, qualified on its
key field. Call 02 finds the currently-obtained TIORDR-REC and loops
on its detail records, which the end user can modify, erase from, and
store additional records with.

Figure 6-26. Database Access Summary Screen

COMH

§=8e

AMD ===

Function Action Data Base Record Qualifier Mesting Bl
OLMES TIORDR-REC =KEYQUAL @ 1
PL TIORDR-REC #CURRENT - 1
OHES TIODET-REC =ND-(unL

lect (=Qualification T=Tailoring H=Moue A=After B=Before I=Insert D=Delete

Defining VSAM Database Calls 141

Define additional 9 Repeat the above steps to define subsequent calls for a program, or
calls to modify call definition.

View list of all 10 When you finish defining all calls for your program, view a summary
calls list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. Rearrange, add to, and delete from the list as follows:

® Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

® Add a call definition between calls in the list by typing i (insert)
next to a call and then defining the new call.

® Delete a call by typing d (delete) next to the call.

Special Considerations

® While Online Express lets you completely define database calls
without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

® If you specify multiple loops in your program, you must specify
which loop you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the
Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Defining VSAM Database Calls

You can define VSAM database calls to obtain, loop, modify, erase, and
store any record. Follow these steps to define VSAM database calls:

Select Database 1 Select option 6, Database Access, from the Online Express menu.
Access Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

User’s Guide

142 Chapter 6 Define Database Access

Figure 6-27. Database Access Summary Screen

COMMAND ===

Function Action Data Base Record Qualifier Mesting Bl

S5=Select (=Qualification T=Tailoring M=Mouve A=After B=Before I=Insert D=Delete

Define the first 2 To define the first call, enter s in the selection field next to call
call number 01. The Database Record Selection screen displays, listing all
records in the program subschema, as shown in Database Record
Selection Screen.

Figure 6-28. Database Record Selection Screen

COMMAND ===» _

Action Data Base Record Sequence Field/Set Name Typ
TVPART-RAEC PH-PART-NO Usn
TVCUST-REC CM-CUSTOMER-HOD Vsh

Actions: 0=Dbtain M=Modify E=Erase §=Store L=Loop P=Position

Specify action 3 Enter one or more action codes, in any order, in the Action field
codes next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on a
record and allows the end user to modify, erase, and store it, as
indicated by the o, I, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.

User’s Guide

Qualify the record

Defining VSAM Database Calls

Figure 6-29. Specifying Database Action Codes

COMMAND ===
Action Data Base Record Sequence Field/Set Hame
TICUST-REC CH-CUSTOMER-ND
olmes_ TIORDR-REC CO-DRDER-ND
TIODET-REC
TIPART-REC PH-PART-HD

Actions: 0O=0btain MW=Modify E=Erase S=Store L=Loop P=Position

4 Access the Database Qualification screen by entering s in the
selection field next to the record that you want to obtain. The
Database Qualification screen displays, listing all fields of the
selected record, as shown in Database Qualification Screen.

Figure 6-30. Database Qualification Screen

COMMAND ===> _
AECORD: TUPART-REC ACTIONS: OMESL
Field Name To0p Value Len Boo
CPM-PART-NO mo BRRES

Line cmds: I=Insert, H=Repeat, D=Delete

5 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be either a COBOL screen field or Working-Storage name, or a
literal enclosed in quotation marks. You can qualify the following

User’s Guide

143

144 Chapter 6 Define Database Access

Save and review
the specifications

User’s Guide

types of fields, as shown below. Each field’s type automatically
displays in the Ty(pe) field on the screen.

Field Type Description

KY Key field. To qualify on a partial key, type over the
value in the Len(gth) field.

PR Primary index.

SR Non-unique search field.

For example, in Qualifying a Record, the key field CO-ORDER-NO
qualifies the record. The qualification is satisfied when the end user
enters a value in the screen field PM-PART-NO is greater than or
equal to the value in the database record TVPM-START-BROWSE.

Figure 6-31. Qualifying a Record

COMMAND ===

RECORD: TUPART-REL ACTIONS: OMESL

Field Mame Ty Op Value Len Boo
CopwpaRT-NO PR >= tupn-start-browss_ 00088

6

To qualify a record on a key field that consists of multiple fields,
create a group-level qualification value field and move the values of
the fields to it. You then qualify the key with the qualification value
field. See Multiple-Field Key Qualification.

When you finish qualifying the record, save your specifications.

View a summary of the call that you just defined by pressing PF3
twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TVPM-START-BROWSE,
qualified on its key field.

Define additional
calls

Defining VSAM Database Calls

Figure 6-32. Database Access Summary Screen

COMMAND ===

S$=Select (=Qualification T=Tailoring M=Move A=After B=Before I=Insert D=Delete

Function Action Data Base Record Qualifier Mesting Bl

OMESL TVYPART-REC =KEYQUAL & 1

8 Repeat the above steps to define subsequent calls for a program, or

to modify any call definition.

When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

® Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

® Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

® Delete a call by typing d (delete) next to the call.

Special Considerations

While Online Express lets you completely define database calls
without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the

User’s Guide

145

146

Chapter 6 Define Database Access

Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Defining IDMS Database Calls

Using IDMS
database calls

Connecting and
disconnecting
records in
owner/member
sets

Select Database
Access

User’s Guide

You can define IDMS database calls to obtain, loop, modify, erase, and
store any record-an owner record, a member record, or an independent
record that is neither an owner or member. For example, you can obtain
an owner record and loop on its member records to obtain multiple
records that the end user can modify, erase, and store. Online Express
stores a member record for the owner record that is currently obtained
when the store action executes.

In addition, you can connect and disconnect records in owner/member
sets. For example, you might want to change ownership of an employee
record from one department record to another. To do so, you use action
codes to disconnect the employee record from its current department
record, and connect it to a different department record. Or you might
want to disconnect the ownership of the employee record completely,
making it an independent record. All records in a disconnect/connect
operation must be current of record type, meaning that they must be
obtained immediately before the operation executes.

Follow these steps to define an IDMS database call for any record:

1 Select option 6, Database Access, from the Online Express menu.
Alternatively, enter 6 or dba on any primary Online Express screen.
The Database Access Summary screen displays.

Defining IDMS Database Calls 147

Figure 6-33. Database Access Summary Screen

COMMAND ===

Function Action Data Base Record Qualifier Mesting Bl

S$=Select (=Qualification T=Tailoring M=Move A=After B=Before I=Insert D=Delete

Define the first 2 To define the first call, enter s in the selection field next to call
call number 01. The Database Record Selection screen displays, listing all
records in the program subschema. IDMS owner and member
records display, showing their owner/member set relationships.
Member records appear indented from their owners, as shown in
Database Record Selection Screen.

Figure 6-34. Database Record Selection Screen

COMMAND ===>
Action Data Base Record Sequence Field/Set Hame
TICUST-REC CM-CUSTOMER-NO
TIORDR-REC CO-ORDER-ND
TIODET-REC
TIPART-REC PM-PART-ND

Actions: 0=0btain M=Modify E=Erase 8§=Store L=Loop P=Position

Specify actions 3 Enter one or more action codes, in any order, in the Action field
next to the record of the first call. For example, Specifying Database
Action Codes illustrates a simple call that obtains and loops on an
owner record and allows the end user to modify, erase, and store it,

User’s Guide

148 Chapter 6 Define Database Access

Obtain member
records

User’s Guide

as indicated by the o, |, m, e, and s action codes entered next to the
record. To define nested loops, see Nested Loops.

Figure 6-35. Specifying Database Action Codes

COMMAND ===
Action Data Base Record Sequence Field/Set Mame
TICUST-REC CH-CUSTOMER-ND
olmes_ TIORDR-REC CO-DRDER-NO
TIODET-REC
TIPART-REC PH-PART-HO

Actions: 0O=0btain M=Modify E=Erase $=Store L=Loop P=Position

4

To obtain a member record of the owner that you just obtained,
define another call to find the owner record and obtain the
member. To do so, enter the p action code next to the owner record,
and the o(btain) action code next to the member. To loop on the
member, also enter the [(oop) action next to the owner. For
example, to find TIORDR-REC and loop on TIODET-REC, enter the p
and l(oop) action codes next to TIORDR-REC, and the o(btain) action
code next to TIODET-REC, as shown in Finding an Owner Record to
Obtain and Loop on Its Member.

In addition, you can enter the m(odify), e(rase), and s(tore) action
codes next to the member record if you want the end user to be
able to perform those actions against it.

Figure 6-36. Finding an Owner Record to Obtain and Loop on Its

Member
COMMAND ===
Action Data Base Record Sequence Field/Set Hame Typ
TICUST-REC CH-CUSTOMER-ND OLI
pl TIORDR-REC CO-ORDER-HO DLI
omes_ TIODET-REC
TIPART-REC PH-PART-NO DLl

Qualify the record

Defining IDMS Database Calls

5 From the current Database Record Selection screen, access the
Database Qualification screen by entering s in the selection field
next to the record that you want to obtain. The Database
Qualification screen displays, listing all fields of the selected record,
as shown in Database Qualification Screen.

Figure 6-37. Database Qualification Screen

COMMAKD ===

RECORD: TIORDR-REC ACTIONS: OMES

Field Name Ty Op Value Len Bool
CO-0OADER-STATUS s AAHA2
CO-CUST-NUMBER SA BARAG
CO-CUST-ENTRY-DATE SR ARARG
CO-0ADER-DEL-DUE-D S BARBG
CO-0RDER-DEL-DUE- H s ABAR2
CO-DRDER-DEL-INST Sh Ann2n
CO-ORDER-ORLGIN- ED S ARAR2
CO-ORDER-ND Ky _ LT

ine cmds: I=Insert, R=Repeat, D=Delete

6 Qualify the record on one or more fields by entering an operator
and a qualification value next to the field(s). A qualification value
can be either a COBOL screen field or Working-Storage name, or a
literal enclosed in quotation marks. You can qualify the following
types of fields, as shown below. Each field’s type automatically
displays in the Ty(pe) field on the screen.

Field Type
AD

CA
KY
s5Q
SR

For example, in Qualifying a Record below, the key field CO-ORDER-

Description

Address field, if one exists. Online Express displays the
address field as a field named DB-KEY.

CALC key field.

Key field.

Sequence field of a member record’s index set.
Non-unique search field.

NO qualifies the record. The qualification is satisfied when the end

user enters a value in the screen field TIOM-ORDER-NO that equals a

value in the database record field CO-ORDER-NO.

User’s Guide

149

150 Chapter 6 Define Database Access

Figure 6-38. Qualifying a Record

COMMAND ===

RECORD: TIDRDR-REC ACTIONS: OMES

Field Mame Ty Op Value Len Ba
' nggﬁﬁé@iéiﬁiﬁé """""""" s 35355 '

ST-NUMBER SR
CO-CUST-ENTRY-DATE SR
CO-DRDER-DEL-DUE-D SR
CO-ORDER-DEL-DUE-W SR BanA2
CO-ORDER-DEL-IMNSTR SR
CO-ORDER-DRIGIN-CD SR
CO-ORDER-HO Ky

= tiom-order-no_ L

To qualify a record on a key field that consists of multiple fields,
create a group-level qualification value field and move the values of
the fields to it. You then qualify the key with the qualification value
field. See Multiple-Field Key Qualification, later in this chapter.

Save and review 7 When you finish qualifying the record, save your specifications.

the specifications
View a summary of the call that you just defined by pressing PF3

twice. Note in Database Access Summary Screen that call 01 obtains,
loops on, modifies, erases, and stores TIORDR-REC, qualified on its
key field. Call 02 finds the currently-obtained TIORDR-REC and loops
on its detail records, which the end user can modify, erase from, and
store additional records with.

Figure 6-39. Database Access Summary Screen

COMMAND ===
Action Data Base Record Sequence Field/Set Hame
TICUST-REC CH-CUSTOMER-ND
TIORDR-REC CO-DRDER-NO
TIODET-REC
TIPART-REC PH-PART-HO

Actions: 0=0btain M=Modify E=Erase S=Store L=Loop P=Position

User’s Guide

Defining IDMS Database Calls

9 Repeat the above steps to define subsequent calls for a program, or
to modify any call definition.

10 When you finish defining all calls for your program, view a summary
list of the calls by displaying the Database Access Summary screen.
Ensure that the calls appear in the order in which you want them to
execute. You can rearrange, add to, and delete from the list as
follows:

® Move any call to a position before or after another call by
typing m (move) next to the call, and either b (before) or a
(after) next to another call.

® Add a call definition in between calls in the list by typing i
(insert) next to a call and then defining the new call.

® Delete a call by typing d (delete) next to the call.

Special Considerations

® \While Online Express lets you completely define database calls
without having to code them, you can also extend and customize
those calls to suit your needs. See Customized Database Calls.

® If you specify multiple loops in your program, you must specify
which loop that you plan to map to a repeated record block on your
program screen. By default, Online Express assigns the value 1 in the
Blk (Block) field of the first loop on the Database Access Summary
screen, and leaves the field blank for all other calls. If you plan to
map fields of a different loop, enter the value 1 in its Blk field, and
blank out the default Blk field value of the first loop. For more
information, see Nested Loops.

Connecting and Disconnecting Records

You can define database calls that connect and disconnect records to
and from owner/member sets. To do so, perform the following steps:

1 Ensure that you have defined the Update function in your program
definition and on the program screen.

2 Define a call that obtains the member record that you want to
disconnect by entering the o(btain) action code next to it.

User’s Guide

151

152 Chapter 6 Define Database Access

Define a call that finds the member’s owner record by entering the
p action code next to the owner.

Define a call that disconnects the member from its current owner
record by entering the d(isconnect) action code next to the member.

Define a call that obtains the new owner record that you want to
connect the member record to.

Define a call that connects the member record to the new owner by
entering the c(onnect) action code next to the member.

Display the Database Access Summary screen to view all calls that
you created in the above steps, as shown in Database Access
Summary of Connect/Disconnect Program.

Database Access Summary of Connect/Disconnect Program:

Function Action Data Base Record Qual i fier Nesting
01 *UPDATE O EMPLOYEE- REC *KEYQUAL O
02 *UPDATE P DEPT- A- REC *NO-QUAL O
03 *UPDATE D EMPLOYEE- REC *NO-QUAL 0
04 *UPDATE O DEPT- B- REC *KEYQUAL O
05 *UPDATE C EMPLOYEE- REC *NO-QUAL 0

Enter *update in the Function field of each call to update the
modified owner/member relationship, as shown in Database Access
Summary of Connect/Disconnect Program. The *update entries
cause the program to execute all the calls when the end user
executes the Update function on the program screen.

Customized Database Calls

Six basic tailoring
options

User’s Guide

While Online Express lets you completely define database calls without
having to code them, you can also extend and customize those calls to
suit your needs. Use any of the following techniques, in any of the
supported database environments:

Define nested loop calls.

Execute multiple database actions with one program function.

Using nested
loops

Nesting levels

Customized Database Calls

® \Write and execute custom processing routines at APS-provided
locations in your program known as database call control points.
Control points let you add customized error processing routines and
routines that you want to execute before or after a database call.

® Override status codes and error messages.
® Qualify a record key that consists of multiple fields.

® Execute a call as a custom program function anywhere that you can
perform a paragraph, such as at a program control point.

The following sections explain these techniques.

Nested Loops

You use nested loops to obtain multiple occurrences of multiple records.
Loops that are not nested obtain multiple occurrences of a single
record. You can map any loop records to a repeated record block, list
box, or combination box on your screen, or you can loop on records to
calculate field totals, and display just the calculation results.

When you define two loop calls in a program, the first loop is an outer
loop, and the second loop is an inner, or nested, loop. The nested loop
executes repeatedly each time that the outer loop executes once, and
obtains all records that satisfy the outer loop record key. For example,
you might want to loop on all order records of a particular customer,
and loop on all detail records of all the order records.

Or you might want to loop on a record to obtain a certain record
occurrence that you loop on again, and display just the second loop’s
records. For example, if your program must display all items to be
included in the next shipment to a certain customer, you first loop on all
outstanding orders for the customer to determine which order ships
next. You then loop on that order to obtain all its detail records.
Executing the Store Action When Querying a Record and Database Call
Tailoring Screen illustrate this example.

To indicate that the inner loop is nested within the outer loop, Online
Express assigns the default nesting level value - 1 to it on the Database
Access Summary screen. The outer loop’s nesting level is 0, indicating
that it is not nested.

User’s Guide

153

154 Chapter 6 Define Database Access

Example of
nested loop calls

User’s Guide

When you define more than two loops, each loop is nested within the
previous loop. That is, the second loop is nested within the first, and the
third loop is nested within the second. The default nesting level of the
third loop is - - 2. You can define as many nested loops in your program
as you need.

In the sample IMS program in A Nested Loop, a nested loop obtains all
detail records of each order record that is obtained by the program’s
previous loop. In addition, the call following the nested loop obtains
the part master record for each detail record. Fields from all three
records display in a repeated record block on the program screen.

Figure 6-40. A Nested Loop

COMMARD ===> _
Function Action Data Base Record Qualifier Hesting B

AEC =KEYQUAL &

REC =KEYQUAL @
-REC =CURREHT - 1
REC *HU-HUHL

REC =KEYQUAL - - 2

The sample program above executes as follows:

® (Call 01 obtains the customer record. It is qualified on the customer
record key, the customer number.

® (Call 02 is the outer loop. It loops on the order record, qualified on
the order record key, the customer number. When the outer loop
finds the first order, call 03 executes.

® (Call 03 is the nested loop. It positions the database pointer on the
currently-obtained first order and loops on the detail record. When
it finds the detail record that is associated with the first order, call
04 executes.

® (Call 04 is an obtain call, nested within the second loop. It obtains
the part master record associated with the detail record that was
obtained by the nested loop.

® (Calls 03 and 04 execute repeatedly until no more detail and part
master records are found for the first order record.

® Call 02 executes again, obtaining the second order record.

Overriding
nesting levels

Example of
overridding
nesting levels

Customized Database Calls

® (Calls 03 and 04 execute repeatedly until no more detail and part
master records are found for the second order record.

® (Calls 02 through 04 execute repeatedly until no more order, detail,
or part master records are found for the customer number specified
in the customer record call, call 01.

Depending on what you want your program to do, you might need to
override the nesting levels of nested loops to nest them under different
loops, or to execute them independently of other loops. By default,
Online Express assigns default nesting levels to each loop, in the Nesting
field on the Database Access Summary screen. If you define three loops
in your program, their default Nesting field values are as follows:

Loop Nesting Value Description

1 0 Loop is not nested

2 -1 Loop is nested within loop 1
3 --2 Loop nested within loop 2

You can decrease the default nesting level of any loop simply by typing
over the Nesting field value. For example, if you want the second loop

to execute independently of the first loop, you change its nesting level
from - 1 to 0. Or, if you want the third loop to be nested within the first
loop rather than the second, you change its nesting level from - - 2 to -
1. APS ensures that your nesting levels do not skip a level. For example,
you cannot specify a level 0 loop, followed by a level - - 2 loop.

When you override nesting levels, ensure that the value 1 appears in the
Blk (Block) field of the outer loop that you plan to map to a repeated
record block on your program screen. For example, if you have two
loops with the nesting level 0, and you want to map fields of only the
second loop to your screen, blank out the default value 1 in the Blk field
of the first loop, and enter 1 in the Blk field of the second loop.

In the following example, the program must display all items to be
included in the next shipment to a certain customer. The first loop reads
all outstanding orders for the customer and executes a user-defined
routine to determine which order ships next. The second loop obtains
all detail records of the order found by the first loop, and maps them to
a repeated record block.

Note that if the default nesting level of the second loop is used, the
program would not execute as required. The program would loop on
and obtain all customer order records and their detail records. In

User’s Guide

155

156 Chapter 6 Define Database Access

User’s Guide

addition, Online Express would assume that records of the first loop will
map to the repeated block.

To make the program execute as required, note in Overridden Nesting
Level and Blk Values that:

® The nesting level of calls 02 and 03 are changed from - 1 to 0 to
make them not nested within the first loop.

® The Blk field value of the first loop is changed from 1 to spaces to
indicate that the loop does not display in the repeated record block.

® The Blk field value of the second loop is changed from spaces to 1 to
indicate that the loop does display in the repeated record block.

Figure 6-41. Overridden Nesting Level and Blk Values

COMMAND ===>
Function Action Data Base Record Qualifier Hesting Blk
a1 oL TI0ADR-REC !K[VﬂUHL g
B2 0 TIODRDR-REC =KEY(UAL @
B3 PL T10RDR-REC =CURHEHT ® i
0 0 TIODET-REC =ND-(UAL
(1]

Functions with Multiple Database
Actions

You can define a program function to execute more than one database
action. For example, you can define the query function to execute the
store action as well as the obtain action.

Suppose you want to store in a log record the ID of each end user who
queries a customer order record. You define one call to obtain the order
record, and another call to store the IDs in another record, as shown in
Executing the Store Action When Querying a Record. To cause the query
function to execute the store call as well as the obtain call, you enter
the value *query in the Function field next to the store call. You then
customize the store call with user-defined logic to move the user IDs to
the log record. To write and execute custom logic for database calls, see
Custom Logic at Database Call Control Points.

Write custom
logic for database
calls

Customized Database Calls

Figure 6-42. Executing the Store Action When Querying a Record

COMMAND ===3>
Function Action Data Base Record Qualifier Hesting B
A1) 0 TIOADA-REC =NO-QuaL #
n2 ~qULH€ 3 USER-LOG-RECORD =H() ﬂUHL [
EE «l}SER_ ERROR-LDG-RECORD =NO-(UAL &
(]

Custom Logic at Database Call Control

Points

Without leaving Online Express, you can write and automatically
execute custom database call processing logic to supplement or override
the default logic that Online Express generates. You execute custom
logic at any of several APS-provided locations in your program, known
as database call control points. The control points let you add
processing logic before and after a database call, and when calls
execute normally or abnormally. You select control points from a list
that displays on the Database Call Tailoring screen. The list includes the
following control points:

Control Point
Befor DB Access
Before Loop

Normal Status
(Before Record is
Processed)

Normal Status
Exception Status

Error Status

After DB Access
After Loop

Location
Before a non-loop database call executes
Before a loop database call executes

Before Online Express maps looped records to
the screen

After Online Express maps any records to the
screen

After the database call returns a status flag with
the Exception status code

After the database call returns a status flag with
the Error status code

After a non-loop database call executes
After a loop database call executes

User’s Guide

157

158 Chapter 6 Define Database Access

Write local or
global custom
processing logic

Local stubs

Global stubs

User-defined
macros

Tailor individual
database call
actions

The Normal Status
control points

User’s Guide

You can write control point logic specifically for one program, or for use
throughout your application. Program-specific custom logic is known as
a local program stub; custom logic that you use throughout your
application is known as a global program stub. Alternatively, you can
write a macro and invoke it in any program of any application. You
execute any stub or macro at any control point.

A local stub can consist of Procedure Division and Data Division code.
You write a local stub in the Specification Painter, which you access from
the Database Call Tailoring screen.

A global stub can consist of Procedure Division paragraphs. You write a
global stub in the Program Painter, which you access from the
Application Painter.

A macro can consist of any code that you write using the APS
Customization Facility, a high-level tool for writing and processing
macros. You include macro library members in your application on the
Application Painter screen.

You add custom logic to, or tailor, each action of a database call
individually. For example, you might want to tailor the obtain action by
adding a data validation routine that executes whenever the obtain
action executes.

The Normal Status (Before Record is Processed) control point lets you
add custom logic before looped records map to a repeated record block
on your screen. Use this control point if you want to map only some of
the records that a loop obtains. In your stub or macro, write conditional
logic to determine which records to map. Online Express provides a flag,
OK-TO-PROCEED, that you set to True to map and process the record, or
False to bypass mapping and processing. You can ignore the flag if you
do not use this control point; the flag is set to True by default. To add
custom logic after Online Express maps any record to your screen, use
the Normal Status control point.

The following example illustrates both control points. Suppose that you
must map the records that show annual sales of $100,000 or more in the
Northwest region, and calculate and map the grand total of those
records. You first define a loop call and qualify it to obtain the records
of $100,000 or more. Then you tailor the loop call with two local stubs.

The first stub checks the records obtained by the loop to allow only
records of the Northwest region to be processed further. The second
stub calculates the grand total of those records, and maps the total to

Adding Custom
Logic To a Call

Customized Database Calls

the screen. The generated loop call and stub paragraphs are shown
below:

DB- PROCESS REC SALES- RECORD

WHERE ANNUAL- SALES- TOTAL > 99999
PERFORM CHECK- BEFORE- VAPPI NG- STUB- PARA
I F OK- TO- PROCEED
ADD 1 TO CTR
PERFORM RECORD- STOREKEY- PARA
MOVE REC- TO- SCREEN- BLK1
PERFORM CHECK- AFTER- MAPPI NG- STUB- PARA

CHECK- BEFORE- MAPPI NG- PARA

TRUE OK- TO- PROCEED
I F SALES- REGI ON NOT = NORTHWEST
FALSE K- TO- PROCEED

CHECK- AFTER- MAPPI NG- PARA

cal cul ation and mapping routine for grand total

Note that:

Online Express generates the loop call as an APS DB-PROCESS call.

The CHECK-BEFORE-MAPPING paragraph is written and executes at
the Normal Status (Before Record is Processed) control point. Online
Express generates the paragraph’s PERFORM statement.

The CHECK-AFTER-MAPPING paragraph is written and executes at
the Normal Status control point. Online Express generates the
paragraph’s PERFORM statement.

Online Express generates all other lines of code that are subordinate
to the DB-PROCESS call.

Write and automatically execute custom logic for a call as follows :

Display the call on the Database Access Summary screen.

Enter t(ailoring) next to the call to display the Database Call
Tailoring screen.

Specify which action that you want to customize by entering its
action code, such as o(btain) or s(tore), in the Action To Be Tailored
field, as shown in Database Call Tailoring Screen. You can tailor the
Obtain, Modify, Store, and Erase actions.

User’s Guide

159

160 Chapter 6 Define Database Access

User’s Guide

Figure 6-43. Database Call Tailoring Screen

COMMAND ===> _

RECORD NAME: TDORDR-REC

ACTION TO BE TAILORED ===> 0 ACTIOMS SPECIFIED: OMES
Control Points Action Control Point Name

BEFORE DB ACCESS
NORMAL STATUS
EXCEPTION STATUS
ERROR STATUS
AFTER DB ACCESS

Actions: $=Macro call, P=Perform, G=Global code, L=Local code (E to edit]

STATUS MATRIR 0K === H END ===> R NTF ===> R DUP ===> E VID ===»
[H=Hormal, B=Exception, E=Error)

ERROR MESSAGE : ===» R3(08PX-MSG-3818-0BTAIN-ERRORESO

ERROR MESSAGE TYPE
ABORT ON ERROR

> § {5=5tandard T=Text M=Macro)
> Y (Y or N)

4 In the Action field next to the control point where you want to add
logic, either invoke a macro that contains the logic, execute a global
stub that contains the logic, or write and execute the logic in a local

stub, as follows:

5 To write a local stub, first enter e(dit) in the Action field next to the

To invoke a macro, enter $ in the Action field, and the macro

name in the Control Point Name field. The macro must reside in

the USERMACS library member that you specify on the
Application Painter screen. For rules on writing macros, see the
APS Customization Facility User’s Guide.

To execute a global stub, enter g in the Action field, and the
global stub name in the Control Point Name field. You must
define the global stub in the Program Painter and specify its
name on the Application Painter screen. For rules on writing
global stubs, see Custom Program Functions.

To write and execute a local stub, perform steps 5 and 6.

control point where you want to write the logic. The Specification
Painter displays, as shown in Error Flag Status Codes.

Overriding status
codes

Customized Database Calls

Figure 6-44. Writing a Local Stub in the Specification Painter

EDIT —-- PROGAAM: DEMLOCAL CP MEMBER: FUNCABB1 —------——--——— COLUMHS BA1 B
COMNAND === SCROLL ===> PAG
SLINE= -K¥WD- 1228 —x—-—-3B-— x5O Siet'{ B |
T0P OF DATA
BEGLAE PARA UALIDATE-PAAT-HO S -
#86248 4= THIS ROUTIHE UALIDAYES THAT YHE PARY HO SPECIFIED
ERET ¢ FOR AN OADER DETAIL AECORD ACTOALLY E4ISTS ON FILE
LT DH-DEIATH BEC PART-MASIEA-BEC WHERE PM-PART-HD -
RARSHA ... PROADERK-PART-HO SUD [CTA) AESET
LT EEHOT OK-OH-REE
daa7aa PRONDENN-SYSHSE = *IHUALID PART HUWDER
RBRARA TP-QT1R PHORDERM PRT+POS PORT-HO{CTR]
paagaa TP-PERFORK ERRSERDGNDqlliT
BOTTOM OF DATA

6 Write the local stub in the Specification Painter and save it. For rules
on writing local stubs, see Defining Custom Program Functions. You
do not name a local stub. After you save the stub, Online Express
redisplays the Database Call Tailoring screen with the message
PAINTED next to the control point.

Status Codes and Error Messages

You can customize database call processing to override the status codes
of Online Express status flags and the text of default error messages.
You do both on the Database Call Tailoring screen.

Online Express provides five status flags. By default, all status flags
except OK-ON-REC return the Error status code, as shown below:

Status Flag
OK-ON-REC
END-ON-REC
NTF-ON-REC
DUP-ON-REC
VIO-ON-REC

Default Status Code
N(ormal)

E(rror)
E(rror)
E(rror)
E(rror)

When Online Express returns the Error status flag, the program aborts
and performs the Error-Send-And-Quit paragraph.

To override the default Error flag processing, you can change a status
flag’s status code from Error to Exception, and then write your own
error routines at control points on the Call Tailoring screen. You do so

User’s Guide

161

162 Chapter 6 Define Database Access

Overriding error
messages

Qualify group-
level keys

User’s Guide

by overtyping the status code values in the Status Matrix fields, as
shown in Error Flag Status Codes and writing error routines as described
in Custom Logic at Database Call Control Points. To just prevent the
Error flag from aborting the program, specify n for the Abort On Error
field on the Database Call Tailoring screen.

Figure 6-45. Error Flag Status Codes

COMMAWD === _
RECORD WAME: TDORDR-REC
ACTION TO BE TAILORED ===> 0 ACTIOMS SPECIFIED: OMES
Control Points Action Control Point Name
BEFORE DB ACCESS
NORMAL STATUS
EXCEPTION STATUS
EHROR STATUS
AFTER DB ACCESS
Actions: $=Macro call, P=Perform, G=Global code, L=Local code [E to edit]

STATUS MATRIR 0K === H END ===> R NTF ===> R DUP ===> E VID ===»
[H=Hormal, B=Exception, E=Error)

ERROR MESSAGE: ===» R3(08PX-MSG-3818-0BTAIN-ERRORESO
ERROR MESSAGE TYPE ===3 § ([S=Standard T=Text MW=Macro]
ABORT ON ERRORA ===> ¥ (YorN

Online Express generates error messages that show which type of call
failed and which record caused the failure. You can override the default
messages with either a text message or a macro that contains a text
message. To do so, enter either the text or the macro name in the Error
Message field, and specify in the Error Message Type field whether you
entered text or a macro.

Multiple-Field Key Qualification

To qualify a VSAM or IDMS group-level key field, you write custom logic
that moves the key's elementary field values to a group-level
qualification value field that you define. You then qualify the key with
the qualification value field. For example, suppose that a key has the
following elementary fields:

01 SALES-KEY.
05 REG ON- CODE PIC X(2).
05 YEAR- CODE PIC X(2).

Write and execute
the custom logic

Qualifying
Multiple-Field
Keys

Customized Database Calls

You write custom logic that defines a group-level Working-Storage field
and moves the values of the two elementary fields to it, as follows:

- KYWD-

W501

MOVE SCREEN- REG ON- CODE TO REG ON- CODE
MOVE SCREEN- YEAR- CODE TO YEAR- COCDE
NEW SALES- KEY.

05 REG ON- CODE PIC X(2).

05 YEAR- CODE PIC X(2).

On the Database Qualification screen, you qualify the key field, SALES-
KEY, with the qualification value field, NEW-SALES-KEY.

You write and execute the custom logic at the Before DB Access control
point, on the Database Call Tailoring screen. See Custom Logic at
Database Call Control Points.

Follow these steps to qualify a multiple-field key field with a
qualification value field:

1 Define the call as you normally do, using the Database Record
Selection screen, but do not qualify the call yet.

2 Return to the Database Access Summary screen.

3 On the Database Access Summary screen, enter t(ailoring) next to
the call to display the Database Call Tailoring screen.

4 If the o(btain) action does not display in the Action To Be Tailored
field, enter it now, as shown in Database Call Tailoring Screen for
the Obtain Action.

User’s Guide

163

164 Chapter 6 Define Database Access

User’s Guide

Figure 6-46. Database Call Tailoring Screen for the Obtain Action

COMMAWD === _
RECORD WAME: TDORDR-REC
ACTION TO BE TAILORED ===> 0 ACTIOMS SPECIFIED: OMES
Control Points Action Control Point Name
BEFORE DB ACCESS
NORMAL STATUS
EXCEPTION STATUS
EHROR STATUS
AFTER DB ACCESS
Actions: $=Macro call, P=Perform, G=Global code, L=Local code (E to edit]

STATUS MATRIR 0K === H END ===> R NTF ===> R DUP ===> E VID ===»
[H=Hormal, B=Exception, E=Error)

ERROR MESSAGE: ===» R3(08PX-MSG-3818-0BTAIN-ERRORESO
ERROR MESSAGE TYPE ===3 § ([S=Standard T=Text MW=Macro]
ABORT ON ERRORA === ¥ (¥ or N)

5 Enter e(dit) in the Action field next to the control point named
Before DB Access. The Specification Editor displays so that you can
write the qualification value field logic in a local stub. Online
Express automatically executes the local stub at this control point,
before the call executes. See Defining Custom Program Functions,
for rules on coding local stubs. Alternatively, you can execute a
global stub or invoke a user-defined macro at the control point.

6 Access the Database Qualification screen.

7 Qualify the key field by entering the = operator in the Operator
field, and the group-level qualification value field in the Value field.
In this example, you qualify the key field SALES-KEY with the value
field NEW-SALES-KEY.

Database Calls as Custom Program
Functions

Typically, you define calls that execute when the end user enters a
function code, presses a key. You can define additional calls that you
execute anywhere that you can execute a paragraph, such as at a
control point. For example, you might want to store in a log record the
error messages that end users receive when querying a customer order
record. You first define a call that stores the log record. Then, on the

Customized Database Calls

Database Access Summary screen, you enter *user in the Function field
to indicate that you will execute the call as a paragraph, somewhere in
Online Express, as illustrated in Call 03 in Defining a Call That You
Execute As a Custom Function:

Figure 6-47. Defining a Call That You Execute As a Custom Function

COMMAND ===3>
Function Action Data Base Record Qualifier Hesting B
A1) 0 TIORDA-AEC «HO-QuaL #
n2 -qULHE USER-LOG-RECORD =HO-QUAL #
E: «lISER_ 8 ERROR-LDG-RECORD «ND-(uaL @
(1]

After you define the *user call, Online Express writes it to a paragraph.
You then execute the paragraph anywhere that Online Express allows,
such as at a control point or on the Alternate Functions screen. In the
example above, you would execute the paragraph at the control point
after the screen is read, named POST-SCREEN-READ, on the Control
Points screen. You then would write and execute custom code at the
AFTER DB ACCESS control point on the Database Call Tailoring screen to
move the error messages to the log record.

Follow these steps to write and execute a call in a custom program
function:

1 Define the call as you normally do. On the Database Access
Summary screen, enter *user in the Function field next to the call.

2 View the name of the paragraph to which Online Express writes the
*user call. To do so, enter *user in the Command field. The User
Controlled Database Calls screen displays, showing the APS-
generated paragraph name. You can override the name on this
screen by overtyping it.

3 Perform the paragraph anywhere that Online Express allows.

User’s Guide

165

166 Chapter 6 Define Database Access

Savekey and Commarea Storage

Purpose of
savekey storage

Define savekey
storage in screen
definition or
Commarea

Size of savekey is
automatically
calculated

Commarea also
required to store
data you pass

User’s Guide

You use a savekey storage area to store key record values during
program execution. You must define savekey storage if your program
must do any of the following:

® Update records with the U(pdate) and D(elete) program functions
® Obtain records sequentially with the N(ext) program function

® Display repeated record blocks that the end user can scroll with the
F(orward) and B(ackward) functions

You can store savekey data either in:

® The program Commarea, a storage area that Online Express
automatically creates when you indicate so on the Savekey
Definition screen.

® Fields that you define on the program screen.

If you use screen fields to store the savekey data, you define either one
or two savekey fields, depending on your screen design as follows:

® If your screen displays only one occurrence of data at a time, and
the data is updateable, you define one savekey field.

® If your screen displays a scrollable or updateable repeated record
block as well as a single occurrence of data, you define either:

® Two savekey fields: one for the repeated block data and one for
the single occurrence data.

® Orone savekey field for both.

Online Express automatically calculates the minimum size requirement
for savekey storage, and displays that size on the Savekey Definition
screen. Your savekey size is the total of the key lengths of each
updateable record on your screen, plus a one-byte flag per key.

Another purpose of a Commarea is to store data that your program
passes between programs. If you use the X(CTL), M(SG-SW), or C(all)
functions to pass data between programs, you must specify on the
Savekey Definition screen the size of the largest record that you must
pass. Online Express adds this number of bytes to your Commarea.

Define a
Commarea

Savekey and Commarea Storage

You define a program Commarea simply by specifying its size on the
Savekey Definition screen. Its size should be the number of bytes of the
largest record that you pass between programs. If you also use
Commarea to store your savekey data, Online Express adds its byte
requirements to Commarea if you specify so.

When you define a Commarea to store savekey data, or data that you
pass between programs, or both, Online Express creates the following
storage area in Commarea when you generate the program:

-KYWD- 12-*%----20---%----30---*%----40---*%----50---*--
SYme $PX- CA- COWPUTE- LEN(savekeybytes, sharedbytes)
CA05 FI LLER

$PX- CA- SETUP

where:

® Savekeybytes is the number of savekey storage bytes that Online
Express calculates for storing record keys when:

® Obtaining records sequentially with the N(ext) program
function

® Displaying repeated record blocks that the end user can scroll
with the F(orward) and B(ackward) functions

® Re-reading repeated record blocks so that the end user can
update and delete them with the M(odify) and E(rase)
functions.

Note: Online Express calculates the number of savekeybytes as
the key length of each updateable record on the screen, plus a
one-byte flag per key. Note the following exception:

® For SQL repeated record blocks that are scrollable, Online
Express calculates savekeybytes as the length of each Order By
column, plus a one-byte flag per key.

® Sharedbytes is the number of bytes that you specify for storing data
that you pass between programs with the X(CTL), M(SG-SW), or
C(all) functions. The number that you specify can be any number of
bytes that you want to pass. Online Express stores the sharedbytes
in the data structure in Commarea named PX-USER-COMMAREA.

User’s Guide

167

168 Chapter 6 Define Database Access

View storage
requirements

Define savekey
storage in screen

User’s Guide

fields

Defining Savekey Storage and a
Commarea

To define a savekey storage area and a Commarea, follow these steps:

1

N

Ensure that you have defined all program functions and database
calls for the program.

Display the Savekey Definition screen by selecting option 7, Savekey
Definition, from the Online Express menu. The screen displays the
savekey storage requirements, in number of bytes, as shown in
Savekey Definition Screen. If you want to define savekey fields,
write down these requirements so you will know how large to
define your savekey field(s).

Figure 6-48. Savekey Definition Screen

COMMARD ===> _
. Savekey
Screen Field Required Bytes
FOR HOH-REPEATED
RECORDS ===> SAUEREY-1 LLLTG
FOR REPEATED RECORDS > BAUEREY-2 BBR15 - B5 OCCURREHCES = BAB7S TOTA
(BLOCK 1)
DR FOR ALL RECORDS » BEB83
ke
____________ uH [———
USE COMMAREA FOR SAUEKEY STORAGE REQUIREMEHIS ===»> H é? or H)
ADDITIONAL COMMAREA BYTES REQUESTED ===> BAAHH

3 To store savekey data in screen fields, first determine whether to

define one or two savekey fields, as follows:

If your screen updates only one occurrence of data at a time, or
your program must execute the N(ext) function, define just one
savekey field.

If your screen displays an updateable repeated record block as
well as a single occurrence of data, define either:

® Two savekey fields: one for the repeated block and one for
the single occurrence.

® Or one savekey field for both.

Define savekey
storage in the
Commarea

Define a global
Commarea

Savekey and Commarea Storage

Define your savekey field(s) in your screen definition, using the APS
Screen Painter. Set their Length and Type attributes as follows:
Attribute Setting

Length The number of bytes specified in the Savekey
Required Bytes field on the Savekey Definition screen

Type P(rotected)

Redisplay the Savekey Definition screen and enter the savekey field
name(s) in the Screen Field field.

To store savekey data in the program Commarea, enter y(es) in the
field, Use Commarea for Savekey Storage Requirements.

To define storage in the Commarea for receiving data that another
program passes, enter a number of bytes in the field, Additional
Commarea Bytes Requested.

Special Considerations

To ensure that your Commarea can accommodate both the program
key and the largest amount of data that the program can receive
from another program, you can define a global Commarea size that
all programs of the application use as their Commarea size. To do
so, follow these steps:

a Check the Savekey Definition screen of each program to
determine the largest savekey requirement.

b Determine the number of bytes of the largest record that your
program can receive.

¢ Add these two numbers.

d Ina control file or a USERMACS macro, assign the result to the
APS variable named &TP-USER-LEN. Online Express uses the
value of this variable to assign the size of the savekey storage in
Commarea. The format of & TP-USER-LEN is as follows.

&TP- USER- LEN = savekeybytes + sharedbyt es
where:

® Savekeybytes is the value of the Savekey Required Bytes for
All Records field.

User’s Guide

169

170 Chapter 6 Define Database Access

® Sharedbytes is the value of the Additional Commarea Bytes
Requested field.

Suppress ® You might want to suppress the generation of the savekey storage
generation of area and savekey logic for a call if you want to:
savekey storage

area ® Update or delete records that do not have a unique index

® Perform blind update or delete functions

To do so, after you define the call, display the Database Access
Summary screen and enter either *update (for a Modify call) or
*delete (for an Erase call) next to the call in the Function field. For
example, to update and delete a record, you would write two
separate calls--one to obtain and modify the record and one to
obtain and delete the record. You would enter the following values

for each call:

Call Function Field Value Action Field Value
01 *update oM

02 *delete OE

User’s Guide

171

7 Generate the Application

This chapter contains the following sections:

Concepts of Generation
Setting Options
Generating Applications

Executing Applications

Concepts of Generation

Tailor generation

You can generate an entire application or you can generate selected
programs and screens of an application. When you generate an
application, the APS Generator and APS Precompiler translate APS
specifications into a complete structured COBOL application. APS then
passes the source to your COBOL compiler and link edit program to
produce a load module.

You tailor how APS generates an application using options and job
submission modes. Options are available for controlling both the
Generator and Precompiler, as well as target specific options.

When APS generates an application, it:

Ensures that each component of the application exists.

Generates screen symbols for each screen for use by the
Precompiler.

Generates screen source for use by the DC environment.

Rearranges the specifications programs into proper COBOL
program organization.

User’s Guide

172 Chapter 7 Generate the Application

® Includes externally-defined information that the program
references, such as copylibs and user-defined macros at the
appropriate COBOL program locations.

® Processes all database and data communications calls and user-
defined macros, translating all source to COBOL source.

® Translates all APS Report Writer source to COBOL source.

® Writes a temporary error message file and merges it with the
COBOL compiler error message file. The combined error message
file presents messages sorted by program line number with both
types of messages appearing where appropriate.

APS stores generated and precompiled COBOL program source and
screen output in the following data sets in your user Project and Group,
depending on the DC target specified:

Generated Screen, Mapset Generated Program

DC Target Output File Output File

ClCs GENBMS COBCIC

IMS GENMFS COBIMS

ISPF Dialog GENDLG COBDLG
GENS5DLG (Mod 5)

ISPF prototype GENPANEL COBISPF
GEN5PANL(Mod 5)

MVS (batch) Not applicable COBMVS

Setting Options

Define Before you generate an application, you must set options to define the
development development environment appropriately. You set options for:
environment .

Project and Group
® APS Generator
® APS Precompiler
* |IDMS

® SQL Bind and Translate

User’s Guide

Setting Options

APS sets option default values for these options according to your
installation configuration.

To access the APS Options menu, from the APS Main Menu enter option
0 in the Command field. Alternatively, from any APS screen, enter optin
the Command field.

Figure 7-1. APS Options Menu

APS Options HMenu
OPTION ===>

Reset Options

Generator Options

Project Group Environment
Precompiler Options
Report Options

DB2 Bind Options

Job Card Options

IDHS Options
International Options

L~ o
[e e e O A |

Setting Project and Group Options

Specify to APS the Project and Group location of your application and
where you want APS to generate the Project and Group DDIFILE data
set. If you use the APS Data Element Facility or the APS/ENDEVOR
interface, specify their locations as well. To do so, follow these steps:

1 Access the Project Group Environment screen. To do so, from the
APS Options Menu, enter option 2 in the Option field. Alternatively,
from any APS screen enter opt 2 in the Command field. The Project
Group Environment screen displays.

2 Complete the fields on the Project Group Environment screen as

follows:

Field Description

Project The name of the Project. For example, myproj.
Must be 1-8 alphanumeric characters; the first
character must be alphabetic.

Group The name of the Group. For example, mygrp.

Must be 1-8 alphanumeric characters; the first
character must be alphabetic.

User’s Guide

173

174 Chapter 7 Generate the Application

Field Description

DDIFILE The location of the Project and Group’s DDIFILE
data set; do not specify the name DDIFILE.
Default: The Project and Group path specified
above. For example, myproj.group.

Data Element Optional. The location of the Data Element

Library Prefix Facility APSDE data set; do not specify the name
APSDE. For example, apspg.project1.group1. For
information on the Data Element Facility, see
Administrator’s Guide: Chapter 2, "Managing
Data Elements."

Setting Generator Options

Set the APS Generator options appropriately for your environment. To
do so, follow these steps:

1 Access the Generator Options screen. To do so, from the APS
Options Menu enter option 2 in the Option field. Alternatively, from
any APS screen enter opt 2 in the Command field. The Generator
Options screen displays.

Figure 7-2. Generator Options Screen

APS Generator Options
COMMAND ===>
TARGET 0S8 ===> (MUS, USE)
DG ===> (IMS, CICS, DLG, MUS, or ISPF(prototyper))
DB ===> (IMS, DLI, USAM, SQL, OR IDHMS)
SQL ===> (Blank, DB2, SQLDS)
JOB DE3ST ===
JOB CLASS ===> CARDIN MEMBER ===>
MSE CLASS ===>
GENERATE COBOL-II ===> (Yes or Ho)
LISTGEN ===> COBOL COMPILER ===> (1, 2 or 3)
COBOL ===> 1 = 0S/US COBOL (GEMERATE COBOL-II = HO)
OBJECT ===> 2 = COBOL-II
MFS/BMS ===> 3 = COBOL for MUS
GENSRC ===}
APS DEBUG ===>
USER HELP ===> CICS RELEASE ===> (Blank, A or B)
IMS RELEASE ===> (Blank, A or B)
SUPRA ===> {Yes or Ho)
APS Parm ===}
COBOL Parm ===3>

User’s Guide

2

Setting Options

Set options appropriate for your environment as described below.

Option
Target OS
DC

DB

SQL
Job Class

Msg Class
Listgen

COBOL

Object

MFS/BMS

GENSRC

User Help

Job Dest
CARDIN Member

Description and Values
Operating system.

Data communications target. For valid DB/DC
combinations see the "DB/DC Target
Combinations" topic in the APS Reference.

Database target. For valid DB/DC
combinations see the "DB/DC Target
Combinations" topic in the APS Reference.

SQL target.

Specify any job class valid at your site and
known to the APS generators.

Site-specific.

Yes Generates listing of generated code.
See the APS Error Messages manual for
a sample.

No Default.

Yes Saves generated COBOL program
source in the library or data set
appropriate for your DC target. For the
complete list of libraries and data sets.

No Default.

Yes Saves generated object code in
appropriate library.

No Default.

Yes Saves generated BMS or MFS mapsets
in the GENBMS or GENMFS libraries.

No Default.

Yes Saves generated source code in the
GENSRC PDS or data set.

No Default.

Yes Enables generation of APS User Help
Facility source files.

No Default.
Site-specific.
Specify the CNTL library APSDBDC member.

User’s Guide

175

176 Chapter 7 Generate the Application

Access the
Precompiler
Options screen

User’s Guide

Option
Generate COBOLIII

COBOL Compiler

CICS Release
IMS Release
SUPRA

APS Parm

COBOL Parm

Description and Values

Yes Generates COBOL Il source code.

No Default.

1 OS/VS COBOL (Generate COBOL Il = No)
2 coBoOL Il

3 COBOL for MVS

Specify the CICS release at your site.

Specify the IMS release at your site.

Yes Passes SUPRA procedural statements
through APS unchanged.

No Processes SUPRA procedural
statements.

Overrides the APS Parm field on the
Precompiler Options screen. Displays all
options whose default values you have
overridden in the Precompiler Options screen.
You can temporarily override these values
simply by overtyping them in this field, but
changes made here are not saved; they
remain in effect only until you exit APS.

Specify parameters or directives for COBOL
compiler. See the COBOL Language Operating
Guide for valid values.

Setting Precompiler Options

Set the APS Precompiler options appropriately for your requirements or
preferences. To do so, follow these steps:

1 Access the Precompiler Options screen. To do so, from the APS
Options Menu enter option 3 in the Option field. Alternatively, from
any APS screen enter opt 3 in the Command field. The Precompiler
Options screen displays.

Setting Options

Figure 7-3. APS Precompiler Options Screen

QUOTE
SCATRACE
RWT
MOCKUPFHP
SuBR
NARROW
EVALMESS
EENSEH

SPRACEIDENT
FHP

SOURCE
GEMDIRECT
GEWCOMMENT

USERMAMES
APS Parm

LANG=8CB
copoL
JCL

TERT

SEQ=C0BOL
RECOR

SYNTAR=COBOLII
ECORD 5-CoBoL
IDENTIFIER

EMARK=QUESTIONS
DOLLARS

3-CHAR STRIMG
IDENT=PGHID

HO
KLATE=SCB

2 Set options appropriate for your environment as described below.

Option
Apost

Quote

SCBtrace

RWT

Description and Values
Overrides Quote.

Yes Default. Lets you use the
apostrophe character to
delimit non-numeric literals in

your input source.
Overrides Apost.

Yes Lets you use the single quote
character to delimit non-
numeric literals in your input

source.
Default.

Activates the SAGE-TRACE-
FLAG debugging facility.

Default. Generates COBOL
code from APS Report Writer
statements. Specify with
COBOL Il compiler.

Passes Report Writer
statements directly to the
COBOL compiler.

No
Yes

Yes

No

User’s Guide

177

178 Chapter 7 Generate the Application

Option Description and Values

Note: For very large Report
Writer programs, enter
rwt=bigrwt in the APS Parm
field on the Generator
Options screen.

Lang Indicates which type of source to process and
which columns to process.

SCB=yes Default. Processes APS
specifications (S-COBOL) in
columns 8-72; the symbol &07
in your code forces a character
into column 7.

COBOL=yes Processes COBOL source in
columns 1-72.

JCL=yes Processes JCL in columns 1-72.
Useful for text-processing JCL
and for controlling columns 1-
6 of S-COBOL

Text=yes Processes any source in
columns 1-80. All columns are
considered text; no sequence
numbers are generated.
Automatically sets
XLATE=FMP. To override
XLATE=FMP, enter
XLATE=value in the APS Parm
field.

Evalmess Yes Generates messages that list
evaluation bracket
resolutions. Usually results in
long listings.

No Default.

Seq Specifies the type of sequence numbers that APS
generates. See also, Genident, Spaceident, Ident.

COBOL=yes Generates COBOL-style
numbers in columns 1-6.

User’s Guide

Option

Syntax

Emark

Genseq

Spaceseq

Genident

Setting Options

Description and Values

Record=yes Generates new numbers in
columns 73-80, incrementing
by 100 for each input record
and by two for each
generated record.

Identifier=yes Generates line numbers in
columns 73-80; columns 73-74
contain 0.

Specifies which compiler to use.
COBOLlI=yes Generate COBOL-II syntax.
5-COBOL=yes Generate S-COBOL syntax.

Generates a three-character string marking error
and warning messages in the message report.

Questions=yes Default. Generates ???.
Dollars=yes Generates $$$.
3-Char String= Generates the string you

string specify.
Overrides Spaceseq.

Yes Default. Generates sequence
numbers in columns 1-6 for
blank or out-of-sequence lines
of source code and when new
lines are generated.

Overrides Genseq.

Yes Generates spaces in columns
1-6; incompatible with
Lang=Text.

See also, Spaceident, Ident, Seq.

Yes Generates sequence numbers
in columns 73-80 for blank or
out of sequence source code
lines and when new lines are
generated.

User’s Guide

179

180 Chapter 7 Generate the Application

Option

Spaceident

Main

Ident

FMP

Source

User’s Guide

Description and Values

No Default. Generates the last
known contents of columns
73-80 when new lines are
generated and passes
identifiers as they exist in
GENSRC.

See also, Genident, Ident, Seq.

Yes Generates spaces in columns
73-80. Incompatible with
Lang=Text.

Specifies location of the main input source.

MAININ=yes Default. Reads from file
named by external name
MAININ. Use this default
unless using your own JCL.

Instream=yes Reads source instream with
the JCL that you provide.
Member Name= Reads from the PDS or file

membername name or source statement
library designated by the
external name SCELIB.

See also, Genident, Spaceident, Seq.

Yes Generates the internal
program name in columns 73-
80.

No Default.

Yes Default. Processes APS macros

and user-defined
Customization Facility macros.

No Use only with your own JCL
skeleton.
Yes Prints the main input source

program, specified in the
MAIN option, after the
message report.

No Default.

Setting Options

Option Description and Values

Gendirect Yes

Gencomment Yes

No
Usernames Yes

No

Allows generatation of nested
IF statements in the COBOL
source.

Generates replaced source
statements as comments in
the COBOL source.

Default.

Generates the following
prefix for APS-generated
paragraphs: paraname-

Default. Generates the
following prefix for APS
generated paragraphs: G--

Note: To generate any other
prefix, enter the following in
the APS Parm field on this
screen: usernames=prefix

APS Parm Displays all Precompiler options whose default
values you override. These values also display in
the APS Parm field on the Generator Options
screen. APS saves the values you change on the
APS Parm field on the Precompiler Option screen.
APS does not save values that you change in the
APS Parm field on the Generator Options screen.

Setting SQL Bind and Translate Options

Specify Bind and Translate options. To do so, follow these steps:

1

Access the SQL Bind and Translate Options screen. To do so, from the
APS Options Menu enter option 5 in the Command field.
Alternatively, from any APS screen enter opt 5 in the Command or
Option field. The APS Bind Options screen displays.

User’s Guide

181

182 Chapter 7 Generate the Application

User’s Guide

Figure 7-4. DB2 Bind Options Screen

COMMAND ===
DATABASE (0S/2 DB MGR) ===

DB2 SYSTEM MAME

PLAN NAME

OWNER OF PLAN [AUTHID)
QUALIFIER

ACTION
RETAI
ISOLA

W W W W W W W W W W W W
=

UTHORITY

N
TI
VA
IN
RESOURC
RESOURC
P
SI
Cu
NT
GE

-
—
=
m

DEFER
CACHE
DATA

CURRE
HESSA

pB2

REPLACE
YES
RR
BIKD
]

U3E
COMMIT
L0

(If different from APPLICATION)

(If different from APPLICATION)
(Blank or one of the IDs)

[ﬂd

Yes or
RR or C§

Run or Bind)

Yes or Mo

Use or Allocate)
Commit or Deallocate)
[Yes or No)

[E to LA%G

Yes or Mo

d or Replace)
B Ng?

(I, W, E, or ()

2 Select Bind and translate options appropriate for your environment

as described below.

Field
DB2 System Name

Plan Name

Owner of Plan (Authid)

Qualifier

Action

Retain Execution
Authority

Isolation Level
Plan Validation Time

Description and Values

Specify the appropriate name for your
site. Default: DB2.

Specify the plan name you use when
you Bind an application. If you leave
this field blank, the default depends
upon your use of the BIND command in
the Application Painter.

Leave this field blank or specify a
primary or secondary authorization ID
of the BIND.

Leave this field blank or specify the
implicit qualifier for the unqualified
table names, views, indexes, and aliases
contained in the plan.

Specify the bind action to be executed.
Valid values: add or replace.

Specify Yes if you specified REPLACE in
the BIND ACTION field. Otherwise
specify No.

Valid values: rr or cs.
Valid values: run or bind.

Field
Explain Path Selection

Resource Acquisition
Time

Resource Release Time

Defer Prepare

Cache Size

Data Currency

Current Server

Message Flag

Setting Options

Description and Values

Yes Activates the DB2 EXPLAIN
function.

No Does not activate the function.

Valid values: use or allocate. If you
enter ALLOCATE, you must enter
DEALLOCATE in the Resource Release
Time field.

Valid values: commit or deallocate. The
value you enter in this field depends on
the value you entered in the Resource
Acquisition Time field.

Yes Generates the keyword
DEFER(PREPARE), which defers
the prepare statement referring
to a remote object.

No Default.

Specify the size (in bytes) of the
authorization cache to be acquired in
the EDMPOOL for the plan. Valid
values: 0 to 4096.

Yes Data currency is required for
ambiguous cursors.

No Data currency is not required for
ambiguous cursors.

Leave this field blank or specify a
connection to a location before the
plan runs.

Specify which messages display. Valid
values: |, W, E, C, or blank.

User’s Guide

183

184 Chapter 7 Generate the Application

Setting Job Control Cards

You can create up to five job cards - named J1 through J5 - with varying
job names, account information, classes, and other attributes. To do so,
follow these steps:

1

Access the Job Control Cards screen. To do so, from the APS Options
Menu enter option 6 in the Option field. Alternatively, from any APS
screen enter opt 6 in the Command or Option field. The Job Control
Cards screen displays.

Modify the cards as desired.

Setting IDMS Options

Specify IDMS options as follows:

1

User’s Guide

Access the IDMS Options screen. To do so, from the APS Options
Menu enter option 7 in the Option field. Alternatively, from any APS
screen enter opt 7 in the Command or Option field. The IDMS
Options screen displays.

Specify IDMS options appropriate for your environment as described
below.

Option Description and Values
Dictionary Name Specify the dictionary name.
Central Version or Local Specify the compile environment. APS

generates a SYSTRNL with a unique
DSN whose high level qualifier is your

user ID.
v Default. Central Version.
local When you specify local, also

enter a volume in the IDMS
Local Jrnl Disk Vol field.

dummy When you specify dummy,
APS generates a SYSTRNL
DD DUMMY

IDMS Local Jrnl Disk Vol Local compile disk volume for journal.

Option
Dictionary Update

IDMS DMLC Output to PDS

IDMS Loadlib Qualifier
IDMS SYSCTL DSN

CV Node Name

DMLIST (List Generation)

Generate DB-BIND in Pgm

IDMS Password
IDMS 12.0 SYSIDMS DSN

Include IDMSLIB

Setting Options 185

Description and Values

Yes Log program compile
information to the
dictionary.

No Default. Do not log
program compile
information.

Yes Write DMLC compile
statements to a PDS. If you
enter yes, you must allocate
a &DSN..IDMSOUT PDS
prior to compilation.

No Default. Do not write DMLC
compile statements to a
PDS.

Specify full qualifiers for

IDMS..LOADLIB.

Optional. Specify DSN of IDMS

dictionary.

Specify name of central version DDS
(Distributed Database System) node
under which loadlib program is

compiled.

Yes Generate list.

No Default.

Yes Do not suppress the
generation of the DB-BIND
macro.

No Suppress the generation of
the DB-BIND macro. You
must manually code the
DB-BIND macro in your
program.

N/A

Specify the name of the IDMS 12.0
dataset.

Specify the appropriate dataset name
for CICS, MVS or other environments.

User’s Guide

186 Chapter 7 Generate the Application

Resetting Profile Variables

You can reset the profile variables of a Project and Group to their
original installation values. For information on original installation
values, see the Installation Guide chapter Installing APS for z/OS.

This option automatically resets all of the following types of profile
variables:

® All APS Profiles Variables

® All APS library prefixes and DSNs

® Generator Options screen options
® |IDMS Options screen options

® Job Control Cards screen options

® Precompiler Options screen options

® DB2 Bind options

Reset all of the above options as follows:

1 Access the APS Options menu. To do so, from the APS Main Menu
enter option 0 in the Command field. Alternatively, from any APS
screen, enter opt in the Command or Option field. The APS Options
menu displays.

2 Select option 0. APS immediately resets the options and displays a
message informing you that the profile pool has been reset.

Generating Applications

You can generate your entire application all at once or you can
generate selected programs and screens individually. To do so, follow
these steps:

Ensure that your 1 Ensure that you exited your previous APS session normally; if you

last session ended exited abnormally and then submit a generation job, the job will
normally fail. In this case, exit APS normally, re-start APS, and resubmit the
job.

User’s Guide

Set generation
options

Generate
application

Generate
programs or
screens
individually

Check job results

Override BMS
mapset names

Generating Applications

Ensure that your generation options are set appropriately, as
described in Setting Generator Options.

Display the Application Painter and enter ap in the Type field and
the application name in the Member field.

To generate your entire application, enter gen in the Command
field.

Alternatively, to generate one or more programs or screens
individually, enter g next to those program or screen names, as
shown in Generating Programs and Screens Individually. To
generate all screens, enter generate sc all in the Command field, or
enter g next to all screens; to generate all programs, enter generate
pg all in the Command field, or enter g next to all programs.

Figure 7-5. Generating Programs and Screens Individually

EDIT ——— APPLICATION: TDDEMD —— oo COLUMNS ABR B

COMMAND ===> SCHOLL ===> C$H
DC ===> I$PF AUTHOR ===> MKIRER
DB ===5 U3nM SCAEEN 81ZE ===> D2

-LINE- PROGRAMS SCAEEMS 10 REPORTS DATA STR Tv SASC/PSB USERWACS L

RBARAL TDEE TOHE 10

AEARAT IDCN e 10 10082

a8aael o I0FL o IOFL 10 10002

RBAARL g IDOM o IDON 1D 0082

gsages 1007 1001 10 10082

aagRgs 100 lIpns 00 10082

#8aae7 100 ooy 1o 10082

6 Check the result of the jobs in SDSF by selecting Services Job Queue

Special Considerations

In addition to generating APS screen symbols, APS generates a BMS
mapset for each CICS screen, and assigns a default name to each
mapset. To override a BMS mapset name, see Paint Character
Screens.

User’s Guide

187

188 Chapter 7 Generate the Application

® Generate BMS multiple-map mapsets in APS
To generate a BMS multiple-map mapset that includes some or all
screens of your application, do one of the following:

® To include all screens in a multiple-map mapset, enter gen ms
mapsetname in the Command field. This name overrides each
screen’s default mapset name, which is displayed on the Screen
Generation Parameters screen. For more information on default
mapset names, see Setting Parameters for Generation.

® To include selected screens in a multiple-map mapset, use the
APS BMS Multiple-Map Mapset screen to specify the screens and
generate the mapset. To display this screen, select option 4,
Utilities from the APS Main Menu, and then select option 1,
Non-Painted APSSRC/GENSRC Compilation. The APS Precompiler
screen displays. On it, select option 3, Generate BMS Multiple-
Map Mapset.

Important: After you generate a multiple-map mapset using APS,
you must compile, link, and generate the BMS source in your CICS
environment.

Executing Applications

Run from APS

Execute CICS and
IMS applications

User’s Guide

The APS Prototype Execution facility allows you to execute and test
applications. This facility provides 2 environments (IMS and CICS)in
which you can debug and execute an application and test all data
communication and database functions.

You can execute CICS and IMS DC applications using the APS Prototype
Execution facility, which emulates the basic functions of the mainframe
CICS and IMS environments. To use this facility, you must specify the DC
target ISPF when you generate your application. Using this facility, you
can test all data communication and database functions and access all
database environments except IMS.

Executing Applications

Use the following execution facilities to execute fully functional
applications that access your databases:

Application
Clcs

IMS DC
MVS (batch)
ISPF Dialog

APS for z/0OS Execution Facility

APS Prototype Execution (DC target = ISPF)
APS Prototype Execution (DC target = ISPF)
N/A

N/A

To execute and test your application using the APS Prototype Execution
Facility, follow these steps:

Access the execution facilities

1 From the APS Main Menu, enter option 3 in the Command field. The
APS Prototype Execution screen displays.

Figure 7-6. APS Prototype Execution Screen

OPTION ===

1 - RBun program from TESTLIR
2 - Bun application from TESTLIB
3 - RBun GUT application from TESTLIB

APPLICATION ===>
or PROGRAM

Micro Focus Animator [Yes or Mo) === KO

¥

2 Select the appropriate option to display your program or
application, and execute it.

User’s Guide

189

190 Chapter 7 Generate the Application

User’s Guide

191

8 Create User Help

This chapter contains the following sections:
® User Help Facility Concepts

® Defining the Help Database

® Working with the Help Source File

® Generating the User Help Application

® |oading the Help Database

® Customizing the User Help Application

® Maintaining the Help Database

User Help Facility Concepts

Intergrate help
logic

Transfer control
to help
application

The APS User Help Facility allows you to integrate logic into character
applications to display help information. To implement user help,
compile and generate the APS provided help application and recompile
your user application. Three programs comprise the user help
application, APSUHELP, one of which becomes part of your user
application. If desired, you can customize the help application to
conform to programming conventions at your site. To customize
APSUHELP, you change the default values of the variables stored in the
APHLPIN control file. For detailed information regarding
customization, see Customizing the User Help Application.

When a user requests help, the application program transfers control
to the help application program responsible for displaying help
information. APS saves the current user application screen in the help
database or in temporary storage. When your user application
program transfers control to the help display program, it passes
information regarding the type of help information requested. The
help display program reads the help database and displays the
information to the user. When control is returned to your application

User’s Guide

192 Chapter 8 Create User Help

Create four types
of user help

program, the help database or temporary storage area is read again to
restore the current screen.

Since the help display program is part of your user application, you must
compile it in a manner that is consistent with the other programs in
your application. That is, you compile it for the appropriate DC target
and if your applications use a COMMAREA or a SPA, then the help
display program must also have a COMMAREA or SPA of the same
length.

To create help for your applications, you:
® Define the help database.

® (reate the help source file.

® Generate the APSUHELP application.
® Load the help database.

The APS User Help Facility lets you create user help for your user
applications. With this facility, you can create the following types of
help:

® Application help describes the user application and its main screen
options.

® Screen help describes a screen and its options.
® Field help describes the field where the cursor is positioned.

® Field value help displays a list of valid values that end users can
select.

You create a help source file to store the help text for one or more user
applications. You load the help source file into the help database. Once
the help source file is loaded into the help database, you or your end
users can add, modify, or delete any help text in the help database.

Defining the Help Database

Define help for
multiple DB
targets

User’s Guide

You can define help databases for IMS, VSAM, and SQL. Each database is
described below. If required, you can change the default help database

Defining the Help Database

names to conform to your site’s naming conventions. For more
information, see Customizing the User Help Application.

IMS

VSAM

sQL

A two-level database. The access method used is HDAM. The
default database name is HELPDBD. Its parent segment
name is HELPSEG and its child ssgment name LINESEG.

A KSDS variable length file. Its maximum length is 3771
bytes: its minimum length is 121 bytes. The default database
name is HELPVSM.

One variable length table. Refer to the SQL description in
the SQLDDL datasets, HELPDB2 (DB2), for more details.

The primary key for these databases is 42 bytes. It is structured as

follows:

Byte
1

2-39

40-42

Value

Entity Type where:
A=Application
S=Screen

D=Field

V=Field value

Application name
Screen name
Screen + field name

000 or context number (global fields)

Defining an IMS Help Database

Define an IMS database for user help, as follows:

1 Generate the help database description (DBDGEN) for HELPDBD. To
do so, enter 2 in the Command field. From the Dictionary Services
screen, enter 1 in the Command field. From the Importer Facilities
screen, enter 2 in the Command field.

2 Onthe IMS screen, type the DBDSRC member name, helpdbd, in the
Member field and enter 1 in the Command field. Note: You must
create JCL to define the VSAM space for the help database specific
to your site.

User’s Guide

193

194 Chapter 8 Create User Help

User’s Guide

Generate the help program specification blocks (PSBGEN). There are
two PSBSRC members, HELPPSBL and HELPPSB. To do so, enter 2 in
the Command field. From the Dictionary Services screen, enter 1 in
the Command field. From the Importer Facilities screen, enter 2 in
the Command field

On the IMS screen, type the PSB member name, in the Member field
and enter 2 in the Command field.

Zeroload or initialize the help database.

Optionally, regenerate DDI symbols. To determine if you must
perform this step, see Special Considerations.

Defining a VSAM Help Database

Define a VSAM database for user help as follows:

1

Generate IDCAMS control statements. To do so, enter option 2,
Dictionary Services in the Command field on the APS Main Menu.
Enter option 1, Import Facilities in the Command field on the
Dictionary Services screen. Enter option 3, VSAM on the Import
Facilities screen.

Type option 2, Generate IDCAMS (VSAM) Input into AMSERV on the
VSAM Importer screen and type helpvsm in the Member field and
press Enter.

Zeroload the help database.

Optionally, regenerate DDI symbols. To determine if you must
perform this step, see Special Considerations. To regenerate DDI
symbols, enter option 2, Dictionary Services in the Command field
on the APS Main Menu. Enter option 1, Import Facilities in the
Command field on the Dictionary Services screen. Enter option 3,
VSAM on the Import Facilities screen. Type option 3, Generate
DDISYMB Symbols from DDIFILE on the VSAM Importer screen and
type helpvsm in the Member field and press Enter.

Defining the Help Database

Defining SQL Help Databases

Define an SQL database for user help as follows:

1

Create the help database using the SQL statements in the SQLDDL
dataset, HELPDB2 (HELPDBZ2). For example:

CREATE TABLE HELPXDB

(H_PRI ME_KEY CHAR (42) NOT NULL,
(H_BUSI NESS_NAVE CHAR (55),
(H_CONTEXT_NANME CHAR (8),
(H_LST_UPD_DATE DECI MAL (7) NOT NULL,
(H_LST_UPD_TI ME DECI MAL (9) NOT NULL,
(H_LI NE_COUNT DECI MAL (3) NOT NULL,
(H_LI NE_TBL_AREA VARCHAR(3802)) ;

To optimize performance, create an index on column H_PRIME_KEY.

Set the Target option on the APS Generator Options screen to
specify the SQL database target. Valid options are SQLDS, DB2 and
SQL400.

Optionally, regenerate DDI symbols. To determine if you must
perform this step, see "Special Considerations" below.

Special Considerations

If your application database is the same type as your help database,
it is not necessary to regenerate the user application program’s DDI
symbols. However, if the database types are different, you must
include the description for the help database in your DDI input and
regenerate.

If you must generate DDI symbols, ensure that variable &HELP-
SUBSCHEMA-ADD=no in the APHLPIN control file. If you do not,
then &HELP-SUBSCHEMA-ADD =yes. Use the table below to help
you determine when you must regenerate DDI symbols.

Application Database Help Database Regenerate DDI
VSAM VSAM No
VSAM sQL No
VSAM DLI No
VSAM/Other VSAM Yes

User’s Guide

195

196 Chapter 8 Create User Help

Application Database Help Database Regenerate DDI
VSAM/Other sQL No
VSAM/Other DLI Yes
IMS IMS No
IMS SQL No
IMS/Other IMS Yes
IMS/Other sQL No
SQL SQL No
SQL VSAM Yes
SQL DLI No
SQL/Other sQL No
SQL/Other VSAM Yes
SQL/Other DLI Yes

Working with the Help Source File

Use any of the following User Help source utilities to create your help
source file. Before executing these utilities, ensure that your help
database has been defined and created and that the help application,
APSUHELP, has been generated. In addition, before you create the help
source, ensure that your user application and screens have been
created.

Applications Utility Lets you create a complete help application in
one session. If your user application contains
global data elements, you must also use the
Data Elements Utility.

Screens Utility Lets you create help for individual screens, as
well as field help, field value selection lists, and
messages.

Data Elements Utility Lets you create help for global fields that
reside in the APS Data Element Facility.

User’s Guide

Working with the Help Source File

The help source file you create is an ASCII text file. The help source file

layout is as follows:

Byte
1-3

5-42

43-45

First header record

46-53

54-59

60-67

68-121

Second header record

46-100
101-121

Text record

46-48
49-121

Value

001
002
003

“wr< o

screenname +
fieldname
application name
screenname

000
001

Context name
Date created
Time created
Blank

Business name
Blank

Numeric counter
description or value

Description

First header record
Second header record
Text records
(optional)

Field description
Field value
Application
description
Screen description

Text description
Text value

A descriptive name

that easily identifies
the user application
and its components.

User’s Guide

197

198 Chapter 8 Create User Help

Creating the Help Source File

To create the help source file, follow the steps below.

1 From the APS Main Menu, enter option 2 in the Command field.
Then enter option 6 in the Command field. APS displays the User
Help Facility screen.

Figure 8-1. User Help Facility Screen

OPTION ==>

1 - Create Help Source File
2 - Update Database using Help Source File

2 From the User Help Facility screen, enter 1 in the Command field.
APS displays the User Help Source Utility screen.

Figure 8-2. User Help Source Utility Screen

OPTION ==> _

1 - fApplications
2 - Data Elements
3 - Screens

3 From the User Help Source Utility screen, select a utility to create
your help source file.

® If you select, Applications, APS displays the Applications Utility
screen.

User’s Guide

Working with the Help Source File

Figure 8-3. Applications Utility Screen

COMHAND ==5

Application name
Edit business name
Edit text

I |||:1l||i|ﬂ sScreens

If YES:
Edit business name
Edit text

Local fields
If YES:

Edit husiness name
Edit text

Create values
If YES:
Edit text
Help source file name:

=== C:\THPAVAPSERT

LU L 1

VW W WY

W

>
be

Nl
M

Nl

Nl
Hil

L

Ml
Nl

1]
Hl

[(Yes
[Yes

[(Yes

Yes
Yes

[Yes

[Yas
[Yes

[Yes
[Yes

or
or

or

or
or

or

ar
or

ar

ov

Specify the items to be included in the extract, then press EHTER
[Blank for
No

No)
No)

N]

No}

No)
No)

No)
No }

lentity list)

® If you select Data Elements, APS displays the Data Elements

Utility screen.

Figure 8-4. APS User Help Data Elements Utility Screen

COMMAKD ==
Context ===
Context list ===» Hl
Field name =3
Edit business name ===> il
Edit text ===% Kl
Create values ===} Kl
If YES:

Edit text === HI

Help source File name:
===3 L:hiMPVPSERT

Specify the items to be included in the extract, then press EWIER

(Name, blank, or fLL

(Yes or Mo)

(Blank = entity list

(Yes or Ho)
Yes or HNo)

(Yes or Mo)
(Yes or Mo)

® If you select Screens, APS displays the Screens Utility screen.

User’s Guide

199

200 Chapter 8 Create User Help

Figure 8-5. APS User Help Screens Utility Screen

COHHAND ==> _

3creen name ===}

Edit business name ===>
Edit text ===}

Local fields ===
ES:

Edit business name ===
Edit text ===

Create values ===
If YES:

Edit text ===}

Specify the items to be included in the extract, then press ENTER

NG
NO

LH

NG
NC

NG
NG

(Blank for entity list)

[Yes or HNo]

[Yes or No]
[Yes or Ho)

[Yes or Ho)
[Yes or Ho)

[Yes or Ho]
[Yes or No)

4 Complete the fields for the utility selected as follows:

Field
Context Name

Context List

Application Name

User’s Guide

Screen

Data
Elements

Data
Elements

Description

Type the context name
associated with the field to

display all the fields with that
context. Leave this field blank

to display the fields with no

context. Type all to display all
the fields with their contexts.

Select a name from the

selection list by entering s next

to it.

No Do not create a context

list.
Yes Create a context list.

Applications Enter the user application

name, or leave this field blank

and press Enter to display a
selection list. Select a name
from the selection list by
entering s next to it.

Field
Field Name

Screen Name

Edit Business Name

Edit text

Include Screens

Include Fields

Local Fields

Create Values

Help Source File
Name

Working with the Help Source File

Screen

Data
Elements

Screens

All

All

Applications

Applications

Applications
and Screens

All

All

Description

Enter the field name or leave
this field blank and press Enter
to display a selection list. Select
a name from the selection list
by entering s next to it.

Enter the screen name, or
leave this field blank and press
Enter to display a selection list.
Select a name from the
selection list by entering s next
to it.

A business name is a
descriptive name that easily
identifies the user application
and its components.

No Business name defaults
to the user application
name.

Yes Assign a business name.

No Do not create help text.

Yes Create help text.

No Do not create screen
help.

Yes Create screen help.

No Do not create field help.

Yes Create field help.

No Do not create local field
help.

Yes Create field help.

No Do not create field
value help.

Yes Create field value help.

Help source filename, APSEXT.
If this file already exists, it is
overlaid..

User’s Guide

201

202 Chapter 8 Create User Help

Create help text

User’s Guide

5 After completing all fields for the user application components that
you want to create help for, press Enter. The APS User Help Facility
extracts the names of the user application screens and local fields to
create the help source file.

6 If you entered Yes in the Edit Business Name field, APS displays the
Edit Business Name screen. Enter a business name with a maximum
of 55 characters and press PF3.

7 If you entered Yes in the Edit text field, APS displays the Help Text
Edit screen. You can enter up to 50 lines of help text, 73 characters
per line. Edit text using ISPF line commands. If you are creating a
field value selection list, enter one value per line. If your end users
will create the help text, press PF3 to leave this screen blank.

Figure 8-6. Edit Business Name Screen

COMMAND ==

Specify the business name, then press END
Description for APPLICATION LHMAPPL
Context is

Business name ===> lest Application_

Figure 8-7. Help Text Edit Screen

COMMAND ==

Specify the business name, then press END
Description for APPLICATION LMMAPPL
Context is

Business name ===> TEST APPLICATION

USER HELP TERT EDIT FOR APPLICATION LMMAPPL COLUMNS BB1 A72
COMMAND > SCROLL > PAG
Top of Data

""" This menu allows you to select:

To create a new file for a customer and update the database
To update an existing file and update the database

""" 3 To delete and file and update the database

Generating the User Help Application 203

Special Consideration

APS converts text entered on the Help Text Edit window to upper case
when you save or press Enter.

Generating the User Help Application

Verify APSUHELP Before you generate help for your user application, ensure that your

application

project.group data sets contain the APSUHELP application software
described below.

Data set Module Description
APSAPPL APSUHELP APSUHELP application
APSPROG ATUHUPD APSUHELP application programs
APSDISP
APSFM
APSSCRN APDI APSDISP program screen
APSFM APSFM program screen
APSREPT ATUHUPD Report layout for load program
APSDATA HMCOMM Data structure used by APSFM
COPYLIB Copylib members for:
HELPCOPY VSAM help database
HELPDB2 DB2 help database
HELPROOT IMS help database
HELPLINE IMS help database
ATUHFILE Batch load program
Note: Ensure that there are no naming
conflicts with these copylib members
and existing copylib members at your
site.
DDISRC HELPVSM VSAM database description
HELPDBD IMS database description
SQLDDL HELPDB2 DB2 database description
DBDSRC HELPDBD IMS help database description

User’s Guide

204 Chapter 8 Create User Help

Implement user

User’s Guide

help

Data set Module Description
PSBSRC HELPPSBL IMS PSB for ATUHUPD program
HELPPSB IMS PSB for APSDISP and APSFM
program

You incorporate the help you create into the user application through
an APS-provided application, APSUHELP. This application contains three
programs that interface with your user application to make help
available. Do not modify these programs. If you modify these programs,
you must retrofit your modifications to subsequent releases of this
product. The APSUHELP programs are described below.

Program Type Description

A1TUHUPD Batch Loads the help source file into the Help
database.

APSDISP Online Displays the contents of the help source

file. When users request help, control is
transferred from your application to this
program.

APSFM Online Allows you to interactively maintain the
help database.

Generating User Help in CICS/ISPF
Environments

1 Compile ATUHUPD. Ensure that you have typed yes in the User Help
field on the Generator Options screen and that the SUBR option on
the APS Precompiler Options screen is set to no. To compile, access
the Application Painter screen and type vsam in DB field and ispf in
the DC field.

2 Generate the APDI screen. To compile, access the Application
Painter screen and type vsam in DB field and ispf or cics in the DC
field.

3 Generate the APSFM screen. To compile, access the Application
Painter screen and type vsam in DB field and ispf or cics in the DC
field.

4

Generating the User Help Application

Compile APSDISP. Ensure that you have typed yes in the User Help
field on the Generator Options screen. To compile, access the
Application Painter screen and type vsam in DB field and ispf or cics
in the DC field.

Compile APSFM. Ensure that you have typed yes in the User Help
field on the Generator Options screen. To compile, access the
Application Painter screen and type vsam in DB field and ispf or cics
in the DC field.

Recompile your application. Ensure that you have typed yes in the
User Help field on the Generator Options screen.

Generating User Help in an IMS
Environment

1

Compile ATUHUPD. Ensure that you have typed yes in the User Help
field on the Generator Options screen and that the SUBR option on
the APS Precompiler Options screen is set to no. To compile, access

the Application Painter screen and type ims in the DC and DB fields.

Generate the APDI screen. To do so, access the Application Painter
screen and type ims in the DC and DB fields.

Generate the APSFM screen. To compile, access the Application
Painter screen and type ims in the DC field and the DB field.

Compile APSDISP. Ensure that you have typed yes in the User Help
field on the Generator Options screen. This program must be
defined to IMS with the PSB, HELPPSB. If your application is
conversational, then APSDISP must be conversational as well. Set
&TP-USER-LEN the same as your application program.

Ensure that each program of your user application for which you
want to create help contains a modifiable alternate 1/0 PCB and
that the PCB for the help database is included in each user
application program PSB.

Compile APSFM. To compile, access the Application Painter screen
and type ims in DB field and ims in the DC field.

Recompile your application for user help. Ensure that you have
typed yes in the User Help field on the Generator Options screen.

User’s Guide

205

206 Chapter 8 Create User Help

Note: User help does not work for user applications that use $TP-
SCRNLIST to read multiple screens.

Special Considerations

When application programs transfer control to APSDISP and returns,
your application program is PROGRAM-INVOKED from APSDISP. If
you code logic for the PROGRAM-INVOKED paragraph, ensure that
control is returned to the appropriate application program.

In an IMS environment, user help does not work for user
applications that use $TP-SCRNLIST to read multiple screens.

APSDISP must be defined to IMS with the PSB, HELPPSB. If your
application is conversational, then APSDISP must be conversational
as well. If the size of &TP-USER-LEN varies from program to
program, set the size of & TP-USER-LEN to the largest value.

Loading the Help Database

User’s Guide

When you update the help database, you store the help source file you
created.

Loading Help Source for VSAM

If your user application target is VSAM, perform the following steps:

1

Execute ATUHUPD to update the help database. Enter 2 in the
Command field. From the Dictionary Services screen, enter 6 in the
Command field. From the User Help Facility screen, enter 2 in the
Command field. ATUHUPD displays the Update Database Utility
screen where you provide parameters to execute this program.

Loading the Help Database

Figure 8-8. APS User Help Update Database Utility Screen

===3

—————————— APS USER HELP UPDATE DATABASE UTILITY
OPTION ==>

1 - Submit Job
If you wish to update only those entities that have been updated after

a specific date, then specify DATE, and optionally TIME
Restrict to last update older than:

Input help source file name:

User help database :

Name : (BLANK FOR DE2)

===3

DB target type ===> || (DB2, DLI, SOL, USAM)
oD name ===3 (BLANK FOR DE2)

Date ==> (HH/DD/YYYY(US) ,DD/HHAYYYY (EUR) or blank)
Time ==> {HH:HM:85:HMS or blank)

2 Complete the fields on the Update Database Utility screen as
follows:

To store help text that has been changed during a specific time
frame, enter values in the Date and Time fields. To store help
text for all user application components, leave these fields
blank.

In the Input Help Source File Name field, specify the name of the
help source file that you want to store in the help database.

Enter the name of the help database in the User Help Database
Name field.

Enter vsam in the DB target type field.

Enter the environment variable, helpvsm, in the Environment
Name field.

Type 1 in the Option field and press enter to update the help
database.

The APS User Help Facility produces a report that identifies the
updated help components, and stores the report file in the job
gqueue.

User’s Guide

207

208 Chapter 8 Create User Help

User’s Guide

Loading Help Source for IMS

If your user application target is IMS, perform the following steps:

1

Execute ATUHUPD with the PSB HELPPSBL. Enter 2 in the Command
field. From the Dictionary Services screen, enter 6 in the Command
field. From the User Help Facility screen, enter 2 in the Command
field. ATUHUPD displays the Update Database Utility screen where
you provide parameters to execute this program.

Complete the fields as follows:

® To store help text that has been changed during a specific time
frame, enter values in the Date and Time fields. To store help
text for all user application components, leave these fields
blank.

® Inthe Input Help Source File Name field, specify the name of the
help source file that you want to store in the help database.

® Enter the VSAM file name of the help database in the Name
field.

® Enter dli in the DB target type field. If your DB target is SQL,
enter sql for both SQL and DB2 targets.

® Enter the DDNAME, helpims, in the Environment Name field.

® Type 1in the Option field and press enter to update the help
database.

Special Considerations

You cannot load a global field with more than one context. For
example, if a date field is defined to the data element list with
multiple formats, only one format will be loaded in your help
database.

The User Help Facility does not support the date and time
parameters when you upload to the help database.

Customizing the User Help Application

Customizing the User Help Application

You customize help applications by setting values for the variables in
the User Help Facility control file, APHLPIN. This file resides in the APS
CNTL member. Edit this file to specify or change:

Program and screen names (if naming conflicts exists)
Internal and external storage database targets
Subschema access used by the help database
Database name and attributes

Database field names--COBOL or native
Attribute restoration

Screen data storage options

Data field length

Global screen message field name

Field help indicator string

Date format

PF key designations

COBOL help invocation conditions

APS-generated User Help comment suppression

To customize user help, perform the following:

1

Copy and rename APSPRE.APSLIB.APSREL.CNTL(APHLPIN) to
PROJECT.GROUP.CNTL(membername).

Edit PROJECT.GROUP.CNTL(membername) to overwrite any
variables set in APHLPIN.

Add the following statement to the top of your program:

% | NCLUDE USERCNTL(nmember nane)

Note: If you or your administrator has modified the user help control
file since initially generating your user application, you must also

User’s Guide

209

210 Chapter 8 Create User Help

recompile the ATUHUPD, APSDISP, and APSFM programs of the
APSUHELP application.

Maintaining the Help Database

User’s Guide

APS provides an online file maintenance program, APSFM, that allows
you to maintain the help database. When you execute APSFM, you can
add, edit, or delete records stored in your help database. To do so,
follow these steps:

1 In CICS, type apst. In IMS, type /for apsfmo. In ISPF, you execute
APSFM using the APS execution facilities. From the APS Main Menu,
enter 3 in the Command field. APS displays the Prototype Execution
screen. From this screen, enter 1 in the Command field. From the
Prototype Execution screen, enter 1 in the Command field. Type
apsfm in the program field. APS displays the Help Database
Maintenance screen.

Figure 8-9. Help Database Maintenance Screen

#%+ HELF DATA BASE MAINTENANGCE ##%#

ENTITY TYPE (A-APPL D- FIElD DESC S SCREEM V-FIELD VALUES)
APPL/SCREEN HAME
BUSIHESS MAME
CONTERT HAWE
LAST UPDATE: DATE TIME
TERT/UALUES CURREHT PAGE HBR

PF1= CﬂHGELfELEQR SCREEM PF3=EXIT SYSTEM PF5=READ NEW DATA
PFi=PAGE BAC PF8=PAGE FWD PF10=ADD/UPDATE PF12=DELETE RECORD

Modify or delete
help database
records

2

Maintaining the Help Database

To modify or delete a help database record, you must specify the
help database record that you want to edit. To do so, type a value
for the following fields as described below:

Field Description Value
Entity Type Help database recordto A = Application
process S = Screen

D = Description
V = Value of the
data element

Entity Global Type Specifies if the data global
element is global or applicationname
local screenname
Name Name of the entity dataelementname

Press PF5. If the record exists, APS displays the existing data in the
remaining fields. Edit the text using the ISPF line command keys
listed on the screen.

If you are adding a new help database record, APS displays a
message that the entity was not found. Complete the remaining
fields as described below.

Field Description

Business Name Descriptive name of entity

Context Name If data element is global enter a context name

Press PF10 to save the help database record, or PF3 to save the
record and exit the program.

User’s Guide

21

212 Chapter 8 Create User Help

User’s Guide

213

9 Define Online Programs with
Program Painter

This chapter contains the following sections:
® Concepts of the Program Painter

® Creating Online Programs in the Program Painter

Concepts of the Program Painter

An alternative to
Online Express

Mix online with
batch programs

NTRY keyword
generates a
program template

The Program Painter offers you a more conventional method for
writing programs than Online Express. Unlike the menu-driven method
of Online Express, the Program Painter method is text-driven, letting
you enter your specifications on a blank screen using its ISPF-like text
editor. Like Online Express, the Program Painter provides a shorthand
method for creating online COBOL and COBOL/2 programs.

Your application can consist entirely of online programs, or you can mix
online programs with batch programs in the same application. In
addition, the programs of a single application can access different
database and data communication (DB/DC) targets. For example, your
online programs can use CICS to access SQL databases and VSAM files,
while your batch programs access VSAM files and IMS databases. For all
valid online and batch DB/DC target combinations, see Paint the
Application Definition.

By entering a single APS keyword, NTRY, you can generate a program
template, or shell, that fully defines all parts of your program except
for the procedural code that you supply. The template defines:

® The Identification Division, based on your Application Painter
specifications

® The Environment Division, based on your Application Painter
specifications

User’s Guide

214 Chapter 9 Define Online Programs with Program Painter

® The Data Division, including the following Working-Storage and
Linkage Section structures:

® Your database record or file definitions, based on your imported
subschema

® Your screen field data structures, based on your Screen Painter
specifications

® (CICS EIBRCODE and DFHCOMMAREA structures

® Your IMS PCB mask, including I/O and database PCBs, based on
your imported subschema

® An APS data structure for passing data among programs, known
as a Commarea; the Commarea appears in either Working-
Storage or the Linkage Section, depending on your DC target

® PF key definitions, based on your specified DC target
® Flags required by APS
® Portions of the Procedure Division, including:

® A housekeeping routine, to initialize Working-Storage fields,
flags, and counters

® Program invocation logic, to initialize your program when it is
invoked by a transaction ID, a screen, or another program,
based on your specified DC target

® |ogicto send the program screen to the end user’s monitor

Add to or modify You can add to or modify the template as needed. When you do so, you
the template enter additional APS keywords with your source code to specify the
program location where the source belongs. For example, you can:

® Add Working-Storage or Linkage Section data elements and flags
for your procedural routines.

® Redefine the APS Commarea data structure to accommodate the
data that you pass among programs.

® Add to or modify the default program invocation logic to suit your
program requirements.

® Add calls to user-defined Customization Facility macros, and set any
variable values required by the macros.

User’s Guide

Add procedural
source code

Include external
source code in
your programs

Concepts of the Program Painter

To specify procedural logic, you can use any combination of the
following types of source code:

COBOL or COBOL/2

APS database and data communications (DB and DC) calls. These
calls provide almost all the functionality offered by your target
environment calls, but are easier to write. The short, simple formats
of the APS calls shield you from much tedious coding--you simply
enter the call name and any keywords and arguments that you
need. APS generates your specifications as complete calls, written in
the syntax native to your DB and DC environments. For a complete
list of calls for all DB and DC targets, see the"Database Calls" and
"Database Communication Calls" topics in the APS Reference.

APS Structured COBOL (S-COBOL) source code. S-COBOL is an
optional set of COBOL-like procedural structures that are simpler
and more powerful than COBOL or COBOL/2 structures. You can
write S-COBOL statements in conjunction with, or instead of, COBOL
or COBOL/2 statements. For information, see the "S-COBOL
Structures" topic in the APS Reference.

In addition, you can include in your programs externally-defined source
code that further streamlines the process of developing applications.
When you do so, you enter additional APS keywords to specify the
program location where the source code belongs. Applications created
in the Program Painter can use any of the following types of external
source code:

External Source Code Data Set

Global stubs, which are COBOL, APSPROG, your APS Project and Group
COBOL/2, or S-COBOL data set for Program Painter programs
paragraphs that all programs of and global stubs. You create stubs
your application can share using the Program Painter; APS stores

each stub in a separate file. For
information on writing global stubs,
see the "Stubs" topic in the APS
Reference.

COBOL copybooks containing COPYLIB, your APS Project and Group
data structures data set for COBOL copybooks.
or other source code

User’s Guide

215

216 Chapter 9 Define Online Programs with Program Painter

External Source Code Data Set

Data structures created in the ~ APSDATA, your APS Project and Group

APS Data data set for data structures that you

Structure Painter create using the Data Structure
Painter.

User-defined macros USERMACS, your APS Project and

Group data set for user-defined
Customization Facility macros. For
information on writing user-defined
macros, see the APS Customization
Facility User's Guide.

Columns for You enter all program keywords and source code in the following
keywords and columns of the Program Painter screen, depending on which compiler
source code you use.

Source Code Column

Compiler Keyword Column Range Range
OS/VS COBOL 8 through 11 12 through 72
COBOL/2 8 through 11 12 through 80

Creating Online Programs in the Program
Painter

To create an online program using the Program Painter, follow these

steps.
Create the 1 Create your application definition using the Application Painter, as
application described in Paint the Application Definition. Steps 2 and 3 below
definition and describe how to specify your DC and DB targets when creating your
screens application definition.

User’s Guide

Access the
Program Painter

2

5

Creating Online Programs in the Program Painter 217

Specify your DC target on the Application Painter as follows:

If application contains ... Specify this DC target ...
Both online and batch Your online DC target. To identify the
programs batch programs, enter *batch in the

Screen field next to each batch
program name and leave the I/O fields
blank.

Only online programs Your online DC target.

Specify your database (DB) target in the DB field. For a list of valid
DB/DC combinations for generating executable programs to run on
various operating systems, see the "DB/DC Target Combinations"
topic in the APS Reference.

To target DB/2, leave this field blank or let default to VSAM. Then,
before generating the application, specify db2 in the SQL field on
the Generation Options screen.

If your application accesses multiple database targets, specify a
target as follows:

If application accesses ... Specify this DB target ...

Two DB targets, including The non-VSAM target, because APS

VSAM always gives you access to the VSAM
target.

Two or more DB targets, Any of those DB targets. When you

not including VSAM generate the programs, generate just
the programs of your specified DB
target first. Then change the DB target
to the next target and generate just
the programs of that next target. For
example, if your application accesses
both SQL and IMS subschemas,
generate your SQL programs
separately from your IMS programs.

Create your application screens using the Screen Painter, as
described in Paint Character Screens.

On the Application Painter, enter s next to a program name to
display the Program Painter.

User’s Guide

218 Chapter 9 Define Online Programs with Program Painter

Write Remarks

Specify Special-
Names

Define or include
Working-Storage
structures

User’s Guide

7

10

Begin entering your program source code. As you do so, specify the
COBOL program locations where the code belongs--such as the
Working-Storage Section or Procedure Division--by entering APS
keywords next to the source code in the KYWD columns, 8 through
11. You can enter your source code and associated keywords in any
sequence; when you generate the program, APS arranges the
source into the proper COBOL program sequence. For example, you
can define Working-Storage fields in the Procedure Division instead
of Working-Storage.

To write Identification Division Remarks text, enter the REM
keyword in the KYWD column, and the text starting in column 12,
on the same line. Continue on as many lines as you need. REM is
invalid for COBOL/2; to write remarks in this environment, use the
comment keyword instead, which is /*. For example:

- KYWD- 12-*----20---*----30---*----40---*----50---*----
REM Comment t ext

continues onto the next line.
- KYWD- 12-*----20---*----30---*----40---*----50---*----
/* comment text

continues onto the next line.

To write an Environment Division Special-Names statement, enter
the SPNM keyword in the KYWD column, and the statement
starting in column 12, on the same line.

Mark the beginning of your Working-Storage entries by entering
the WS keyword in the KYWD column. Then skip a line and enter
your Working-Storage structures--such as data structures, copylibs,
and DB2 table and cursor declarations--as described in steps 10
through 15.

To define in Working-Storage a data structure in COBOL format,
enter the 01 keyword in the KYWD column (columns 8 and 9), and
your 01-level data item starting in column 12. To define elementary
data items, skip a line and enter them starting in column 12, as
shown below. We recommend that you indent each new level of
elementary data items four columns. For example:

SKYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--

01 WS- STRUCT- | N- COBOL - FORVAT.
05 MY-Ws-FIELD-1 PIC X(8).
05 MY-WE- FI ELD- 2.
10 MY-W5-FIELD-3 PIC X(8).
10 MY-W5-FIELD-4 PIC X(3).

1

12

Creating Online Programs in the Program Painter

Generated APS source:

01 WS- STRUCT- | N- COBOL- FORNVAT.

05 M-Ws-FIELD-1 PIC X(8).
05 M-Ws-FI ELD- 2.
10 MY-W5-FI ELD-3 PIC X(8).
10 MY-W5-Fl ELD-4 PIC X(3).

To define in Working-Storage a data structure in Data Structure
Painter format, enter the REC keyword in the KYWD column
(columns 8 through 10), and your 01-level data item starting in
column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates
them based on how you indent the items. We recommend that you
indent each new level of elementary data items four columns. For
example:

“KYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--

REC WS- STRUCT- | N- DSPAI NTER- FORNAT.
MY- W5- FI ELD- 1 X8
MY- WS- FI ELD- 2
MY- W5- FI ELD- 3 X8
MY- W5- FI ELD- 3 X3

Generated APS source:

01 WS- STRUCT- | N- DSPAI NTER- FORNVAT.

05 MW-Ws-FIELD-1 PIC X(8).
05 MW-Ws-FI ELD- 2.
10 MY-W5-FI ELD-3 PIC X(8).
10 MY-W5-Fl ELD-4 PIC X(3).

To include a copybook in Working-Storage, choose one of the
following methods:

® If you use a COBOL/2 compiler, or if your copybook contains an
indexed table, enter the SYWS keyword in the KYWD column,
and an APS % INCLUDE statement in column 12. For example:

“KYWD- 12-%--2220---%----30---*-=--40---%----50---*--
SYWs % | NCLUDE COPYLIB (MY- COPYBOOK)

User’s Guide

219

220 Chapter 9 Define Online Programs with Program Painter

13

14

15

Define or include 16
Linkage Section
structures

User’s Guide

® If you use an OS/VS COBOL compiler, and your copybook does
not contain an indexed table, do one of the following:

® Enter the 01 keyword in the KYWD column, and a COBOL
COPY statement in column 12. For example:

“KYWD- 12-%---220---%-2-230---*-c2-40---*----50---*-o--
01 COPY MY- COPYBOOK

® Alternatively, copy the copybook into a Working-Storage
field, as follows:

“KYWD- 12-%---220---%-2-230---*-c2-40---*----50---*-o--
01 W6- COPYBOCK- FLD COPY MY- COPYBOOK

To include in Working-Storage an externally-defined data structure
defined in the Data Structure Painter, enter the DS keyword in the
KYWD column, and the data structure name in column 12. For
example:

“KYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-u--
DS DATARECS

To define in Working-Storage a DB2 table declaration or one or
more cursor declarations, enter the SQL keyword in the KYWD
column, and the declaration(s) in column 12. For example:

“KYWD- 12-%-2--20---%-22-30---%c22o40---¥-coo50---Konn-
sQL DECLARE DSN8. TDEPT TABLE

(DEPTNO CHAR(3) NOT NULL,

DEPTNAVE CHAR(36) NOT NULL,

MGRNO CHAR(3) NOT NULL,

ADVRDEPT CHAR(3) NOT NULL)

To include a PANVALET record in Working-Storage, enter the ++
keyword in the KYWD column, and the record name in column 12.
For example:

SKYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--
+ PANVBREC

Mark the beginning of your Linkage Section entries by entering the
LK keyword in the KYWD column. Skip a line and enter your

Define the
Commarea TP-
USERAREA field

Creating Online Programs in the Program Painter

Linkage Section structures in the same manner that you enter
Working-Storage structures.

Note: To include a copybook in the Linkage Section, substitute the
SYWS keyword with the SYLK keyword.

17 Accept or override the default length of the Commarea field, TP-

USERAREA, and optionally redefine it into multiple fields. Although

APS automatically generates a Commarea for all programes, its

default length and program location vary by DC target, as shown

below.

DC Target Default TP-USERAREA Program Location
Length

CICS 80 Working-Storage

IMS 0 Working-Storage

ISPF 2048 Linkage Section

ISPF Dialog 0 Working-Storage

To assign a length to TP-USERAREA, enter the variable value
assignment statement, & TP-USER-LEN, in column 12, and the
keyword SYM1 in the KYWD column. SYM1 places the variable
at the top of your program. For example:

“KYWD- 12-%---220---%-2--30---%--2-40---*----50---*-
SYML &TP- USER-LEN = 49

Generated APS source:

01 TP- COMVAREA.

05 TP- USERAREA PI C X(49).

User’s Guide

221

222 Chapter 9 Define Online Programs with Program Painter

® To redefine TP-USERAREA, enter a redefinition data structure in
either the Program Painter or Data Structure Painter, using
either of the following keyword/source code combinations.

Keyword Source Code

CAO05 Define in the Program Painter a COBOL redefinition data
structure. For example:

SKYWD- 12-%--c-20---%---230---*cco-40---%----50---*-
SYML &TP- USER-LEN = 49

CAO05 CA- REDEF.

10 CA- EMPLOYEE- NAME PI C X(20).
10 CA-EMPLOYEE-TITLE PI C X(20).
10 CA- EMPLOYEE- SSN PI C X(09).

Generated APS source:
01 TP- COMVAREA.

01 FILLER REDEFI NES TP- COMVAREA.

05 TP- USERAREA PI C X(49).
05 PGVt USERAREA REDEFI NES TP- USERAREA.
10 CA- EMPLOYEE- NAME PI C X(20).
10 CA-EMPLOYEE-TI TLE PI C X(20).
10 CA- EMPLOYEE- SSN PI C X(09).
CA Define in the Program Painter a redefinition data structure in

Data Structure Painter format. For example:

SKYWD- 12-%--c-20---%---230---*cco-40---%----50---*-
SYML &TP- USER-LEN = 49

CA PGW USERAREA

10 CA- EMPLOYEE- NAME X20
10 CA-EMPLOYEE-TITLE X20
10 CA- EMPLOYEE- SSN X09

The generated APS source is identical to the source generated
by the CA05 keyword.

User’s Guide

Keyword

CADS

Begin to define
the Procedure
Division

Enter Procedure
Division source
code

18

19

Creating Online Programs in the Program Painter

Source Code

Define in the Data Structure Painter a redefinition data
structure in Data Structure Painter format, and include it in the
program using the CADS keyword. For example:

SKYWD- 12-%--c-20---%---230---*cco-40---*----50---*-
CADS PGM USERAREA

To begin defining the Procedure Division, enter the NTRY keyword
in the KYWD column, and enter its arguments--such as the program
screen--in column 12. NTRY generates logic to initialize your
program when it is invoked, and to send the program’s screen to
the end-user’s monitor, as shown below.

“KYWD- 12-%---220---*-2-230---*-c2-40---*----50---*-o--
NTRY PSI NQY

Generated APS source:

003700 $TP- ENTRY (" PSINQY", "")

003710 I F TP- TRANSI D- | NVOKED

003720 PERFORM APS- TRANSI D- | NV- PARA
003730 ELSE- | F TP- PROGRAM | NVOKED
003740 PERFORM APS- PROGRAM | NV- PARA
003750 ELSE- | F TP- SCREEN- | NVOKED

003760 PERFORM APS- SCREEN- | NV- PARA
003770 $TP-SEND ("PSI NQY", "")

003780

003790 APS- TRANSI D- | NV- PARA.

003800 % | F &TP- USER-LEN > 0

003810 MOVE LOW VALUES TO TP- USERAREA
003820 $SC- CLEAR (" PSI NQY")

003830 EJECT

003840 APS- PROGRAM | NV- PARA.

003850 $SC- CLEAR (" PSI NQY")

003860 EJECT

003870 APS- SCREEN- | NV- PARA.

003880 PERFORM APS- USER- CODE- PARA
003890 EJECT

003900 APS- USER- CODE- PARA.

On the next line, enter your Procedure Division source code, which
can include the following:

COBOL, COBOL/2, or S-COBOL statements and paragraphs. To
write any paragraph, enter the PARA keyword in the KYWD
column, your paragraph name in column 12 on the same line,
and your paragraph statements on the following lines. For

User’s Guide

223

224 Chapter 9 Define Online Programs with Program Painter

information on writing S-COBOL statements, see the "S-COBOL
Structures" topic in the APS Reference.

® APS database and data communication (DB and DC) calls. For
complete lists of calls for all DB and DC targets, see the
"Database Calls" and "Data Communication Calls" topics in the
APS Reference.

® COBOL, COBOL/2, or S-COBOL global stubs. To include a stub in
the program, enter the STUB keyword in the KYWD column and
your stub name in column 12 on the same line. For information
on writing global stubs, see the "Stubs" topic in the APS
Reference.

® Customization Facility macro calls and other statements. For
information on writing these statements, see the Customization
Facility User's Guide.

For example:

- KYWD- 12-*----20---*%----30---*----40---*----50---*--
NTRY PSI NQY

/* BEG N PROCEDURE DI VI SI ON SOQURCE CCDE

I F PF12
SEND PSMENU

ELSE-1F PF1
PSUPDT- EMPLOYEE- NO = PSI NQY- EMPLOYEE- NO
PSUPDT- FUNCTION = ' 1”
SEND PSUPDT

ELSE
SEND PSI NQY

PERFORM SAMPLE- S- COBOL- PARA

PERFORM SAMPLE- COBCOL- PARA

PARA SAMPLE- COBOL- PARA.

[l WLL I NSERT SAMPLE COBOL PARA STMI'S HERE]
PARA SAMPLE- S- COBOL- PARA

[WLL | NSERT SAMPLE S- COBOL PARA STMI'S HERE]
STUB MY- STUB

Generated APS source:

003700 $TP- ENTRY (" PSI NQY", "")

003710 I F TP- TRANSI D- | NVOKED

003720 PERFORM APS- TRANSI D- | NV- PARA
003730 ELSE- | F TP- PROGRAM | NVOKED
003740 PERFORM APS- PROGRAM | NV- PARA
003750 ELSE- | F TP- SCREEN- | NVOKED

User’s Guide

003760
003770
003780
003790
003800
003810
003820
003830
003840
003850
003860
003870
003880
003890
003900
003910
003920
003930
003940
003950
003960
003970
003980
003990
004000
004010
004020
004030
004040
004050
004060
004070
004080
004090

Creating Online Programs in the Program Painter

PERFORM APS- SCREEN- | NV- PARA
$TP-SEND ("PSINQY", "")

APS- TRANSI D- | NV- PARA.
% | F &TP- USER- LEN > 0
MOVE LOW VALUES TO TP- USERAREA
$SC- CLEAR (" PSI NQY")
EJECT
APS- PROGRAM | NV- PARA.
$SC- CLEAR (" PSI NQY")
EJECT
APS- SCREEN- | NV- PARA.
PERFORM APS- USER- CODE- PARA
EJECT
APS- USER- CODE- PARA.
/* BEGI N PROCEDURE Di VI SI ON SOURCE CCDE
| F PF12
$TP- SEND PSVENU
ELSE- | F PF1
PSUPDT- EMPLOYEE- NO = PSI NQY- EMPLOYEE- NO
PSUPDT- FUNCTI ON = ’ 1’
$TP- SEND PSUPDT
ELSE
$TP- SEND PSI NQY
PERFORM SAVPLE- COBOL- PARA
PERFORM SAMPLE- S- COBOL- PARA
PERFORM MY- STUB

SAMPLE- COBOL- PARA.

[COBOL PARA STMIS HERE]
SAMPLE S- COBOL- PARA

[COBOL PARA STMTIS HERE]
MY- STUB

[SAVPLE STUB STMTS HERE]

Write comments 20 To document your program with comments, use the following
formats in the following program locations. Note that in the

User’s Guide

225

226 Chapter 9 Define Online Programs with Program Painter

Enter
Customization
Facility macro
calls and
statements

User’s Guide

21

Procedure Division, you can enter comments at the end of a line of
source code.

Program
Location Comment Format
Anywhere - KYWD- 12-%----20---%----380---%----40---%--
/* comment text
/* comment text
Procedure - KYWD- 12-%----20---%----30---*%----40---*--
Division [/ * conment text

program source code |* comrent text

Enter any Customization Facility macro calls or statements that your
program requires. For example, if on the Application Painter you
include a user-defined macro library in your program, call the
macros you need, and assign values to any variables that the macros
require. Use the following keywords to place the calls and
statements in the following program locations:

Keyword Program Location

SYm1 At the beginning of the program, before macro
libraries that you include at the beginning of the
program

SYmz After macro libraries that you include at the
beginning of the program

SYEN In the Environment Division, after the Special-Names
paragraph

SYDD At the beginning of the Data Division

SYFD In the File Section, after macro libraries that you
include at the beginning of the File Section

SYWs In the Working-Storage Section, after macro libraries
and data structures that you include in Working-
Storage

SYLT In the Linkage Section, after macro libraries and
data structures that you include at the beginning of
Linkage

SYLK In the Linkage Section, after source code that you
include with the SYLT keyword

SYBT At the end of the program

Validate source
code syntax

Preview the
program as
generated source

22

23

Creating Online Programs in the Program Painter

For example:

“KYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--
sYML

[* MACRO VARI ABLE TO APPEAR AT BEG NNI NG OF PROGRAM
[* BEFORE MACRO LI BRARY THAT | | NCLUDE AT BEG NNI NG
[* OF PROGRAM

% &WY- SYMBOL = 1234

SYM
[* MACRO VARI ABLE TO APPEAR AFTER MACRO LI BRARY THAT
[* I I NCLUDE AT BEG NNI NG OF PROGRAM

% &WY-STRING SYMB = "TH S IS A STRI NG’
SYWS
[* MACRO VARI ABLE TO APPEAR AFTER MACRO LI BRARY THAT
[* I I NCLUDE AT BEG NNI NG OF WORKI NG STORAGE.

% &MY-W5- SYMBOL = 1234

To validate that your source code contains no Program Painter
syntax errors, enter validate or val in the Command field. APS
displays a message for each syntax error.

To preview the program as it will look when generated, enter
convert or conv in the Command field. APS converts the Program
Painter source code to generated APS source code. APS does not
include in the converted source any components defined externally
to the program; APS includes them when you generate the
program. To view the source in Program Painter format again, enter
reset or unconv. Such externally-defined components not included
in this step are:

Project\Group
Component data set
Screen record descriptions APSSCRN
Database record definitions DDISYMB and
COPYLIB
Data structures included from copylibs COPYLIB
Data structures included from the Data APSDATA
Structure Painter
User-defined macros USERMACS

To view the source in Program Painter format again, enter reset or
unconv.

User’s Guide

227

228 Chapter 9 Define Online Programs with Program Painter

User’s Guide

24 Exit the Program Painter by pressing PF3 or entering cancel.

Special Considerations

When modifying your program, do not modify the generated
source code; modify only your Program Painter source code.

To customize the program template, you can write any custom
source code and execute it at several predefined locations in the
template. To do so, write paragraphs anywhere in the Procedure
Division, using the APS-supplied paragraph names below. APS
automatically performs the paragraphs at the locations specified
below, in the following order:

Paragraph
APS-AFTER-RECEIVE-PARA

APS-TRANSID-INV-PARA

APS-PROGRAM-INV-PARA

APS-BEFORE-SEND-PARA

Location Performed

After the program is invoked by any
method, and after all field edits are
executed.

After the program is invoked by a
transaction ID, and after all field edits
are executed.

After the program is invoked by
another program.

Before the program sends its screen,
except when the program is invoked
by another program.

10 Create Batch Programs

This chapter contains the following sections:
® Concepts of APS Batch Programming
® Creating Batch Programs

® Sample Batch Program

Concepts of APS Batch Programming

Shorthand
method for
creating programs

Write reports
using Report
Writer structures

Mix batch with
online programs

You create batch programs using the Program Painter, a tool that
offers a shorthand method for developing applications. To fully define
all divisions of your program except the Procedure Division, you simply
enter APS keywords and their arguments. To help you create the
Procedure Division more quickly, APS lets you write your database calls
in simplified APS formats, saving you many lines of coding. You
complete your Procedure Division by entering COBOL, COBOL/2, or S-
COBOL structures. S-COBOL is an optional set of COBOL-like statements
that simplify procedural coding. You enter all your program source
code--including the APS keywords, database calls, and S-COBOL
structures--on a blank Program Painter screen using its ISPF-like text
editor.

You can also use the Program Painter to create batch report programs
using the APS Report Writer structures. This chapter only discusses
creating batch programs that generate to a flat file. For information
about writing reports, see Create Reports with Report Writer.

Your application can consist entirely of batch programs, or you can mix
batch programs with online programs in the same application. In
addition, the programs of a single application can access different
database and data communication (DB/DC) targets. For example, your
batch programs can access VSAM files and IMS databases, while your
online programs use CICS to access VSAM files and SQL databases. For

User’s Guide

229

230 Chapter 10 Create Batch Programs

Keywords
generate programs

Add procedural
source code

User’s Guide

all valid batch and online DB/DC target combinations, see Paint the

Application Definition.

APS builds batch program source code from the following items:

Identification Division:
Environment Division:

Data Division
File Section:

Data Division
Working-Storage Section:

Database record definitions
IMS database PCB mask
Flags required by APS

Data elements and flags for your
procedural routines

Data Division
Linkage Section:

Data elements and flags for your
procedural routines

Procedure Division:

Routines to initialize APS
Working-Storage flags

Procedural source code

Generated by APS, based on your
Application Painter specifications

Generated by APS keywords and
arguments that you enter

Generated by APS keywords and
arguments that you enter

Generated by:

APS, based on your subschema
APS, based on your subschema
APS

APS keywords and source code
that you enter

Generated by:

APS keywords and source code
that you enter

Generated by:
APS

APS keywords, database calls, and
other procedural source code that
you enter

To specify procedural logic, you can use any combination of the

following types of source code.

® COBOL or COBOL/2

® APS database (DB) calls. These calls provide almost all the
functionality offered by your target environment calls, but are
easier to write. The short, simple formats of the APS calls shield you
from much tedious coding--you simply enter the call name and any
keywords and arguments that you need. APS generates your
specifications as complete calls, written in the syntax native to your

Include external
source code in
your programs

Concepts of APS Batch Programming 231

DB environment. For a complete list of calls for all DB targets, see
the "About Database Calls" topic in the APS Reference.

® APS Structured COBOL (S-COBOL) source code. S-COBOL is an
optional set of COBOL-like procedural structures that are simpler
and more powerful than COBOL or COBOL/2 structures. You can
write S-COBOL statements in conjunction with, or instead of, COBOL
or COBOL/2 statements. For information, see the "About S-COBOL
Structures" topic in the APS Reference.

In addition, you can include in your programs externally-defined source
code that further streamlines the process of developing applications.
When you do so, you enter additional APS keywords to specify the
program location where the source code belongs. Applications created
in the Program Painter can use any of the following types of external

source code:

External Source Code

Global stubs, which are COBOL,
COBOL/2, or S-COBOL
paragraphs that all programs of
your application can share

COBOL copybooks containing
data structures or other source
code

Data structures created in the
APS Data Structure Painter

User-defined macros

Data Set

APSPROG, your APS Project and
Group data set for Program Painter
programs and global stubs. You
create stubs using the Program
Painter; APS stores each stub in a
separate file. For information on
writing global stubs, see the "Stubs”
topic in the APS Reference.

COPYLIB, your APS Project and Group
data set for COBOL copybooks.

APSDATA, your APS Project and
Group data set for data structures
that you create using the Data
Structure Painter.

USERMACS, your APS Project and
Group data set for user-defined
Customization Facility macros. For
information on writing user-defined
macros, see the Customization
Facility User’s Guide.

User’s Guide

232 Chapter 10 Create Batch Programs

Columns for
keywords and
source code

You enter all program keywords and source code in the following
columns of the Program Painter screen, depending on which compiler

you use.

Compiler Keyword Column Range Source Code Column
Range

OS/VS COBOL 8 through 11 12 through 72

COBOL/2 8 through 11 12 through 80

Creating Batch Programs

User’s Guide

To create a batch program using the Program Painter, follow these
steps:

1

Create your application definition using the Application Painter, as
described in Paint the Application Definition. Steps 2 and 3 below
describe how to specify your DC and DB targets when creating your
application definition.

Specify your DC target on the Application Painter as follows:

If application contains ... Specify this DC target ...
Both batch and online Your online DC target. To identify
programs the batch programs, enter *batch in

the Screen field next to each batch
program name and leave the 1/0
fields blank.

Only batch programs Mvs. Additionally, leave each Screen
field and I/0O field blank.

Specify your database (DB) target in the DB field. For a list of valid
DB/DC combinations for generating executable programs to run on
various operating systems, see the "DB/DC Target Combinations"
topic in the APS Reference.

To target DB/2, leave this field blank or let default to VSAM. Then,
before generating the application, specify db2 in the SQL field on
the Generation Options screen.

Write Remarks

6

Creating Batch Programs

If your application accesses multiple database targets, specify a
target as follows:

If application accesses ... Specify this DB target ...

Two DB targets, including The non-VSAM target, because APS

VSAM always gives you access to the VSAM
target.

Two or more DB targets, Any of those DB targets. When you

not including VSAM generate the programes, first generate
just the programs of your specified DB
target. Then change the DB target to
the next target and generate just the
programs of that next target. For
example, if your application accesses
both VSAM and IMS subschemas,
generate your VSAM programs
separately from your IMS programs.

On the Application Painter, enter s next to a program name to
display the Program Painter.

Begin entering your program source code. As you do so, specify the
COBOL program locations where the code belongs--such as the
Input-Output Section or File Section--by entering APS keywords next
to the source code in the KYWD columns, 8 through 11. You can
enter your source code and associated keywords in any sequence;
when you generate the program, APS arranges the source into the
proper COBOL program sequence. For example, you can define
Working-Storage fields in the Procedure Division instead of
Working-Storage.

To write Identification Division Remarks text, enter the REM
keyword in the KYWD column, and the text starting in column 12,
on the same line. Continue on as many lines as you need. REM is
invalid for COBOL/2; to write remarks in this environment, use the
comment keyword /* instead. For example:

- KYWD- 12-*----20---*----30---*----40---*----50---*----
REM Comment t ext

continues onto the next line.
- KYWD- 12-*----20---*----30---*----40---*----50---*----
/* Comment t ext
/* continues onto the next line.

User’s Guide

233

234 Chapter 10 Create Batch Programs

Specify Special-
Names

Define File-
Control

Define input file
description

Define input file
record description

User’s Guide

9

10

To write an Environment Division Special-Names statement, enter
the SPNM keyword in the KYWD column, and the statement
starting in column 12, on the same line.

Define the Input-Output Section’s File-Control paragraph as follows.
For each input and output file, enter the 10 keyword in the KYWD
column, and, starting in column 12, enter the paragraph clauses. Do
not enter the word SELECT in the SELECT clause; APS generates it for
you. Continue on as many lines as you need. APS generates the
Input-Output Section and File-Control headers. For example:

- KYWD- 12-*%----20---%----30---%----40---%----50---*----
10 I NPUT- CUSTFI LE
ASSI GN TO EXTERNAL GARYDD
ORGANI ZATI ON |'S LI NE SEQUENTI AL
10 QUTPUT- FI LE
ASSI GN TO EXTERNAL GARYOUT
ORGANI ZATI ON |'S LI NE SEQUENTI AL

Generated APS source:

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.
SELECT | NPUT- CUSTFI LE
ASSI GN TO EXTERNAL GARYDD
ORGANI ZATION IS LI NE SEQUENTI AL.
SELECT QUTPUT-FI LE
ASSI GN TO EXTERNAL GARYOUT
ORGANI ZATION IS LI NE SEQUENTI AL.

Define the file description of your first (or only) input file in the File
Section as follows. Enter the FD keyword in the KYWD column, and
a COBOL file description starting in column 12. For example:

SKYWD- 12-%---220---%-2-230---*-c2-40---*----50---*-o--
FD | NPUT- CUSTFI LE
RECORD CONTAI NS 80 CHARACTERS.

To define the File Section input file's record description in COBOL
format, enter the 01 keyword in the KYWD column (columns 8 and
9), and the 01-level data item starting in column 12. To define
elementary data items, skip a line and enter them starting in
column 12, as shown below. We recommend that you indent each
new level of elementary data items four columns.

“KYWD- 12-%---220---*-2-230---*-c2-40---%----50---*-o--
01 | NPUT- REC.
05 | NP- ACTI ON- CODE PIC X(1).

05 | NP- CUSTOMVER- NO
05 | NP- CUSTOVER- NAME
05 | NP- CUSTOVER- ADDR
05 | NP-CUSTOVER-CI TY
05 | NP- CUSTOMVER- ZI P
05 FILLER

Creating Batch Programs

PI C X(6).
PI C X(20).
PI C X(20).
PI C X(20).
PIC X(9).
PIC X(4).

11 To define the File Section input file's record description in Data
Structure Painter format, enter the REC keyword in the KYWD

column (columns 8 through 10), and the 01-level data item starting
in column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates

them based on how you indent the items. We recommend that you

indent each new level of elementary data items four columns.

- KYWD- 12-*%----20---%----30---*----40---*----50---*%----
REC | NPUT- REC
| NP- ACTI ON- CODE X1
| NP- CUSTOVER- NO X6
| NP- CUSTOVER- NAME xX20
| NP- CUSTOVER- ADDR xX20
| NP- CUSTOVER- CI TY xX20
| NP- CUSTOVER- ZI P X9
FI LLER X4
Generated APS source:
01 | NPUT- REC.
05 | NP- ACTI ON- CODE PIC X(1).
05 | NP- CUSTOVER- NO PI C X(6).
05 | NP- CUSTOVER- NAMVE PI C X(20).
05 | NP- CUSTOVER- ADDR PI C X(20).
05 | NP-CUSTOVER-CI TY PI C X(20).
05 | NP- CUSTOMVER- ZI P PI C X(9).
05 FILLER PI C X(4).

12 If you created the File Section input file’s record description using
the Data Structure Painter, include the data structure in your
program as follows. Enter the DS keyword in the KYWD column,
and the data structure file name in column 12. For example:

13

- KYWD-
DS

12-%-«2-20---%----30---*

I NREC

B o Y 1o F

Define any additional input files in the File Section, in the same
manner that you defined the first one.

User’s Guide

235

236 Chapter 10 Create Batch Programs

Define output file
description

Define output file
record description

Define sort file
description

Define sort file
record description

Define or include
Working-Storage
structures

User’s Guide

14

15

16

17

18

19

Define the file description of your first (or only) output file in the
File Section as follows. Enter the FD keyword in the KYWD column,
and a COBOL file description starting in column 12. For example:

12-%- w220 --%--c230---*--40---*-c2-50---%---.
QUTPUT- FI LE
RECORD CONTAI NS 80 CHARACTERS.

- KYWD-
FD

Define the File Section output file's record description in the same
manner that you defined the input file's record description, as
described in steps 10 through 12. For example:

“KYWD- 12-%---220---*-2-230---*-c2-40---%----50---*-o--
01 QUTPUT- REC.

05 OUTPUT- STATUS PIC X(2).
05 OUTPUT- CUSTOMVER- NO PI C X(6).
05 OUTPUT- CUSTOVER- NAME PI C X(20).
05 OUTPUT- CUSTOVER- ADDR PI C X(20).
05 OUTPUT- CUSTOMER- CI TY PI C X(20).
05 OUTPUT- CUSTOMER- ZI P PIC X(9).
05 OUTPUT- FI LLER PIC X(3).

Define any additional output files in the File Section, in the same
manner that you defined the first one.

To define a sort file description in the File Section, enter the SD
keyword in the KYWD column, and the file description starting in
column 12. For example:

12-%-cao20---%--c230---*-c-40---*-c2-50---%---.
SORT- FI LE

RECORD CONTAI NS 80 CHARACTERS

DATA RECORD | S SORT- RECORD.

- KYWD-
SD

Define the File Section sort file's record description in the same
manner that you defined those of the input and output files. For
example:

“KYWD- 12-%---220---*-2-230---*-c2-40---%----50---*-o--
01 SORT- RECORD.

05 SORT- CUSTOVER- NANVE PIC X(8).

05 FILLER PIC X(72).

Mark the beginning of your Working-Storage entries by entering
the WS keyword in the KYWD column. Then skip a line and enter
your Working-Storage structures--such as data structures, copylibs,
and DB2 table and cursor declarations--as described below in steps
20 through 25.

Creating Batch Programs

20 To define in Working-Storage a data structure in COBOL format,

21

enter the 01 keyword in the KYWD column (columns 8 and 9), and
your 01-level data item starting in column 12. To define elementary
data items, skip a line and enter them starting in column 12, as
shown below. We recommend that you indent each new level of
elementary data items four columns. For example:

“KYWD- 12-%---220---*-2-230---*-c2-40---%----50---*-u--

01 WS- STRUCT- | N- COBOL- FORVAT.
05 MY-Ws-FIELD-1 PIC X(8).
05 MY-WS-FI ELD- 2.
10 MY-W5-FIELD-3 PIC X(8).
10 MY-W5-FIELD-4 PIC X(3).

Generated APS source:

01 W5- STRUCT- | N- COBOL- FORNVAT.

05 MW-Ws-FIELD-1 PIC X(8).
05 MW-Ws-FI ELD- 2.
10 MY-W5-FI ELD-3 PIC X(8).
10 MY-W5-FlI ELD-4 PIC X(3).

To define in Working-Storage a data structure in Data Structure
Painter format, enter the REC keyword in the KYWD column
(columns 8 through 10), and the 01-level data item starting in
column 12. To define elementary data items, skip a line and enter
them starting in column 16, as shown below. Do not enter the data
item level numbers, such as 01 or 05; APS automatically generates
them based on how you indent the items. We recommend that you
indent each new level of elementary data items four columns. For
example:

“KYWD- 12-%---220---%-2-230---%-c=-40---*----50---*-o--

REC WS- STRUCT- | N- DSPAI NTER- FORNVAT
MY- W5- FI ELD- 1 X8
MY- WS- FI ELD- 2
MY- W5- FI ELD- 3 X8
MY- W5- FI ELD- 3 X3

Generated APS source:

01 WS- STRUCT- | N- DSPAI NTER- FORNVAT.

05 MW-Ws-FIELD-1 PIC X(8).
05 MW-Ws-FI ELD- 2.
10 MY-W5-FI ELD-3 PIC X(8).
10 MY-W5-Fl ELD-4 PIC X(3).

User’s Guide

237

238 Chapter 10 Create Batch Programs

User’s Guide

22 To include a copybook in Working-Storage, choose one of the
following methods:

If you use a COBOL/2 compiler, or if your copybook contains an
indexed table, enter the SYWS keyword in the KYWD column,
and an APS % INCLUDE statement in column 12. For example:

“KYWD- 12-%----220---%----30---*-=--40---*%----50---*--
SYWs % | NCLUDE COPYLIB (MY- COPYBOOK)

If you use an OS/VS COBOL compiler, and your copybook does
not contain an indexed table, do one of the following:

® Enter the 01 keyword in the KYWD column, and a COBOL
COPY statement in column 12. For example:

“KYWD- 12-%---220---%----30---*-=--40---*%----50---*--
01 COPY MY- COPYBOOK

® Alternatively, copy the copybook into a Working-Storage
field, as follows:

“KYWD- 12-%--2220---%----30---*-=--40---*%----50---*--
01 W6- COPYBOCK- FLD COPY MY- COPYBOOK

23 To include in Working-Storage an externally-defined data structure
defined in the Data Structure Painter, choose one of the following
methods:

On the Application Painter, enter the data structure name in the
Data Str(ucture) field, and ws in the Loc(ation) field.

Enter the DS keyword in the KYWD column, and the data
structure file name in column 12. For example:

“KYWD- 12-%---220---%----30---*-=--40---%----50---*--
DS DATARECS

24 To define in Working-Storage a DB2 table declaration or one or
more cursor declarations, enter the SQL keyword in the KYWD
column, and the declaration(s) in column 12. For example:

SKYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--

SQL DECLARE DSN8. TDEPT TABLE

(DEPTNO CHAR(3) NOT NULL,
DEPTNAVE CHAR(36) NOT NULL,
MGRNO CHAR(3) NOT NULL,
ADVRDEPT CHAR(3) NOT NULL)

Define or include
Linkage Section
structures

Begin to define
the Procedure
Division

25

26

Creating Batch Programs

To include a PANVALET record in Working-Storage, enter the ++
keyword in the KYWD column, and the record name in column 12.
For example:

“KYWD- 12-%---220---%-2-230---*-c2-40---%----50---*-o--
+ PANVBREC

If your program receives data from a calling program, define its
Linkage Section as follows. Mark the beginning of your Linkage
Section entries by entering the LK keyword in the KYWD column.
Skip a line and enter your Linkage Section structures in the same
manner that you enter Working-Storage structures.

Note: To include a copybook in the Linkage Section, substitute the
SYWS keyword, as shown in step 22, with the SYLT or SYLK keyword.

27

Mark the beginning of the Procedure Division by entering either the
PROC or NTRY keyword to generate the PROCEDURE DIVISION
statement appropriate for your program, as shown below.

Program Type Procedure Division Keyword

Calling or non-calling NTRY or PROC; both keywords generate
a PROCEDURE DIVISION statement.

Called PROC with optional USING clause;

generates a PROCEDURE DIVISION
USING statement, enabling the
program to receive data items from a
calling program’ s CALL statement.

Any IMS program NTRY. PROC is invalid. To specify
arguments for a PROCEDURE DIVISION
USING clause, specify them in a TP-
LINKAGE call that you code in the
Linkage Section.

For example, enter the PROC keyword with the USING clause data
items TOTAL, W-BALANCE, and CHARGERECORD to generate a
PROCEDURE DIVISION USING statement in a called program, as
shown below.

“KYWD- 12-%---220---%-2-230---*-c2-40---*----50---*-o--
PROC ~ TOTAL W BALANCE CHARGERECORD

User’s Guide

239

240 Chapter 10 Create Batch Programs

Enter Procedure
Division source

User’s Guide

code

Generated APS source:

PRCCEDURE DI VI SI ON USI NG TOTAL W BALANCE CHARGERECORD.

28 On the next line, enter your Procedure Division source code, which
can include the following:

COBOL, COBOL/2, or S-COBOL statements and paragraphs. To
write any paragraph, enter the PARA keyword in the KYWD
column, your paragraph name in column 12 on the same line,
and your paragraph statements on the following lines. For
information on writing S-COBOL statements, see the "S-COBOL
Structures" topic in the APS Reference.

APS database (DB) calls. For a complete list of calls for all DB
targets, see the "Database Calls" topic in the APS Reference.

COBOL, COBOL/2, or S-COBOL global stubs. To include a stub in
the program, enter the STUB keyword in the KYWD column and
your stub name in column 12 on the same line. For information
on writing global stubs, see the "Stubs" topic in the APS
Reference.

Customization Facility macro calls and other statements. For
information on writing these statements, see the APS
Customization Facility User’s Guide.

For example:

“KYWD- 12-%---220---%----30---*-=--40---*%----50---*--
PROC
OPEN | NPUT | NPUT- CUSTFI LE
QUTPUT OUTPUT- FI LE
REPEAT
READ | NPUT- CUSTFI LE
WS- CUST- NO = | NP- CUSTOVER- NO
UNTIL AT END ON | NPUT- CUSTFI LE
EVALUATE | NP- ACTI ON- CODE
WHEN * Q
PERFORM QUERY- LOG C
WHEN * U
PERFORM UPDATE- LOGI C
WHEN * D'
PERFORM DELETE- LOGI C
CLOSE | NPUT- CUSTFI LE
OUTPUT- FI LE

PARA QUERY-LGOGI C

Creating Batch Programs

DB- OBTAI N REC CUSTQVER- REC
WHERE CM _CUSTOMER_NO = #W65- CUST- NO
I F OK- ON-REC
OUTPUT- STATUS ='8Q
PERFORM MOVE- COPYLI B- TO- QUTPUT
PERFORM WRI TE- M5SGOUT
ELSE
OUTPUT- STATUS ="uUQ
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

Define 29 To define a Declaratives Section, choose one of the following
Declaratives methods:

Section
® To specify Declaratives Section sections and paragraphs, use the

DPAR keyword, as shown below. Do not enter the
DECLARATIVES header; APS generates it. APS also generates the
END DECLARATIVES statement at the appearance of another
keyword in the KYWD column; be sure that a keyword appears
at the end of your Declaratives Section.

- KYWD- 12-*----20---*----30---*----40---*----50---*--
DPAR section-1-nanme SECTI ON decl arati ve-sent ence
DPAR par a- 1- nane

/* para-1-nane source code

DPAR secti on-2-name SECTI ON decl arati ve- sent ence
DPAR par a- 2- nane
/* para-2-nane source code

Generated APS source:

DECLARATI VES.
section-1-name SECTION. decl arative-sentence

para- 1-nane.
/* para-1-nane source code

section-2-nanme SECTI ON. decl arative-sentence
para- 2- nane.

User’s Guide

241

242 Chapter 10 Create Batch Programs

Write comments

Enter
Customization
Facility macro
calls and
statements

User’s Guide

30

31

/* para-2-nane source code

END DECLARATI VES.

® To specify Declaratives Section statements only--not sections or
paragraphs--use the DECL keyword, as shown below.

- KYVD- 12-%----20---*%----30---*%----40---%----50---*--
DECL decl arati ve- st at enent
decl arati ve- st at enent

Generated APS source:

DECLARATI VES.

decl arative-statenent
decl arative-statenent

END DECLARATI VES.

To document your program with comments, use the following
formats in the following program locations. Note that in the
Procedure Division, you can enter comments at the end of a line of
source code.

Program
Location Comment Format
Anywhere - KYWD- 12-%- - 20---%----30---%----40---*--
/* conment text
/* conment text
Procedure - KYWD- 12-%----20---%----30---*%----40---*--
Division /* comment text

program source code /* conment text

Enter any Customization Facility macro calls or statements that your
program requires. For example, if on the Application Painter you
include a user-defined macro library in your program, you should
call the macros you need, and assign values to any variables that the

Creating Batch Programs

macros require. Use the following keywords to place the calls and
statements in the following program locations:

Keyword
SYM1
SYM2
SYEN
Syio
SYDD
SYFD

SYws

SYLT

SYLK
SYRP

SYBT

Program Location

At the beginning of the program, before macro
libraries that you include at the beginning of the
program

After macro libraries that you include at the
beginning of the program

In the Environment Division, after the Special-Names
paragraph

In the Input-Output Section, after macro libraries that
you include at the beginning of the Input-Output
Section

At the beginning of the Data Division

In the File Section, after macro libraries that you
include at the beginning of the File Section

In the Working-Storage Section, after macro libraries
and data structures that you include in Working-
Storage

In the Linkage Section, after macro libraries and data
structures that you include at the beginning of
Linkage

In the Linkage Section, after source code that you
include with the SYLT keyword

In the Report Section, after any macro libraries that
you include at the beginning of the Report Section

At the end of the program

For example:

- KYWD-
SYML
/*
/*
/*

SYFD
/*
/*
/*

12-%- w220 --%--c230---*---40---*-c2-50---%---.

MACRO VARI ABLE TO APPEAR AT BEG NNI NG OF PROGRAM
AFTER MACRO LI BRARY THAT | | NCLUDE AT BEG NNI NG
OF PROGRAM

% &REC- LEN = 80

MACRO CALL TO APPEAR I N FI LE SECTI ON, AFTER MACRO
LI BRARY THAT | | NCLUDE AT BEG NNI NG OF FI LE

SECTI ON.

% $1 NPUTFI LE- REC- DESCRI P(' | NPUT- REC)

User’s Guide

243

244 Chapter 10 Create Batch Programs

Validate source 32 To validate that your source code contains no Program Painter
code syntax syntax errors, enter validate or val in the Command field. APS
displays a message for each syntax error.

Preview the 33 To preview the program as it will look when generated, enter
program as convert or conv in the Command field. APS converts the Program
generated source Painter source code to generated APS source code. APS does not
include in the converted source any components defined externally
to the program; APS includes them when you generate the
program. Such externally-defined components not included at this

step are:
Component Project\Group Data Set
Database record definitions DDISYMB and COPYLIB

Data structures included from copylibs COPYLIB

Data structures included from the Data APSDATA
Structure Painter

User-defined macros USERMACS

To view the source in Program Painter format again, enter reset or
unconv.

34 Exit the Program Painter by pressing PF3 or entering cancel.

Special Consideration

When modifying your program, do not modify the generated source
code; modify only your Program Painter source code.

Sample Batch Program

Below is a complete program illustrating many APS batch programming
features.

Program Painter source:

SKYWD- 12-%---220---%-2-230---%-c2-40---*----50---*-o--
No) | NPUT- CUSTFI LE
ASSI GN TO GARYDD

User’s Guide

FD

01

FD

01

PRCC

PARA

Sample Batch Program

ORGANI ZATI ON |'S LI NE SEQUENTI AL
QUTPUT- FI LE

ASSI GN TO GARYQUT

ORGANI ZATI ON |'S LI NE SEQUENTI AL
I NPUT- CUSTFI LE

RECORD CONTAI NS 80 CHARACTERS.

I NPUT- REC.
05 | NP- ACTI ON- CODE PIC X(1).
05 | NP- CUSTOVER- NO PI C X(6).

05 | NP-CUSTOVER-NAME PIC X(20).
05 | NP- CUSTOVER- ADDR PI C X(20).
05 [INP-CUSTOVER-CITY PIC X(20).
05 | NP- CUSTOMVER- ZI P PIC X(9).
05 FILLER PI C X(4).
QUTPUT- CUSTFI LE

RECORD CONTAI NS 80 CHARACTERS.

QUTPUT- REC.
05 OUTPUT- STATUS PIC X(2).
05 OUTPUT- CUSTOVER- NO PI C X(6).

05 OUTPUT- CUSTOVER- NAME PI C X(20).
05 OUTPUT- CUSTOVER- ADDR PI C X(20).
05 OUTPUT- CUSTOMER- CI TY PI C X(20).
05 OUTPUT- CUSTOMER- ZI P PIC X(9).
05 OUTPUT- FI LLER PIC X(3).

OPEN | NPUT | NPUT- CUSTFI LE
OUTPUT OUTPUT- FI LE
REPEAT
READ | NPUT- CUSTFI LE
WS- CUST- NO = | NP- CUSTOVER- NO
UNTI L AT END ON | NPUT- CUSTFI LE
EVALUATE | NP- ACTI ON- CODE
WHEN ’ @
PERFORM QUERY- LOGI C
WHEN * U
PERFORM UPDATE- LOGI C
WHEN ’ D
PERFORM DELETE- LOGI C
CLOSE | NPUT- CUSTFI LE
OUTPUT- FI LE

QUERY-LGOGI C
DB- OBTAI N REC CUSTQOVER- REC

WHERE CM _CUSTOMER_NO = #W5- CUST- NO
I F OK- ON-REC

OUTPUT- STATUS ='8Q

PERFORM MOVE- COPYLI B- TO- QUTPUT

User’s Guide

245

246

Chapter 10 Create Batch Programs

PARA

PARA

PARA

PARA

User’s Guide

PERFORM WRI TE- M5SGOUT

ELSE
OUTPUT- STATUS ="uUQ
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

UPDATE- LOG C
PERFORM MOVE- | NPUT- TO- COPYLI B
DB- MODI FY REC CUSTQOVER- REC

WHERE CM _CUSTOMER_NO = #W5- CUST- NO

I F OK- ON-REC
OUTPUT- STATUS ='SM

PERFORM MOVE- COPYLI B- TO- QUTPUT

PERFORM VR TE- M5SGOUT
ELSE
OUTPUT- STATUS ='W

PERFORM MOVE- COPYLI B- TO- QUTPUT

PERFORM VR TE- M5SGOUT

DELETE- LOG C
DB- ERASE REC CUSTOMER- REC

WHERE CM _CUSTOMER_NO = #W5- CUST- NO

I F OK- ON-REC
OUTPUT- STATUS ='SF
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

ELSE
OUTPUT- STATUS ='W
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

ADD- LOGI C
PERFORM MOVE- | NPUT- TO- COPYLI B
DB- STORE REC CUSTOMER- REC

WHERE CM _CUSTOMER_NO = #W5- CUST- NO

I F OK- ON-REC
OUTPUT- STATUS = 'S8
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

ELSE
OUTPUT- STATUS = 'BS
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VR TE- M5SGOUT

MOVE- | NPUT- TO- OQUTPUT
QUTPUT- STATUS
QUTPUT- CUSTOVER- NO
QUTPUT- CUSTOVER- NAVE

QUTPUT- STATUS
I NP- CUSTOVER- NO
I NP- CUSTOVER- NAVE

Sample Batch Program

QUTPUT- CUSTOVER- ADDR
QUTPUT- CUSTOVER- CI TY
QUTPUT- CUSTOVER- ZI P

I NP- CUSTOVER- ADDR
I NP- CUSTOVER-CI TY
I NP- CUSTOVER- ZI P

PARA MOVE- COPYLI B- TO- QUTPUT

QUTPUT- CUSTOVER- NO
QUTPUT- CUSTOVER- NAVE
QUTPUT- CUSTOVER- ADDR
QUTPUT- CUSTOVER- CI TY
QUTPUT- CUSTOVER- ZI P

CM CUSTOMER- NO
CM CUSTOMER- NAME
CM CUSTOMER- ADDR
CM CUSTOMER- CI TY
CM CUSTOMER- ZI P

PARA MOVE- | NPUT- TO- COPYLI B

CM CUSTOMVER- NO
CM- CUSTOVER- NAMVE
CM CUSTOVER- ADDR
CM CUSTOMER-CI TY
CM CUSTOMVER- ZI P

I NP- CUSTOVER- NO

I NP- CUSTOVER- NAVE
I NP- CUSTOVER- ADDR
I NP- CUSTOVER-CI TY
I NP- CUSTOVER- ZI P

PARA WRI TE- MSGOUT

01

WRI TE OUTPUT- REC

THEFLDS.
05 Ws- CUST- NO PI C X(6).

Generated APS source:

%
%
%
%
%
%
%
%
%
%
%
%

%

&AP- GEN- VER = 2200

&AP- PGW | D = " SAMPLPGM'
&AP- VAl N- PROGRAM: = " NO'
&AP- GEN- DC- TARGET = " MWS"
&AP- GEN- DB- TARGET = "VSAM'
&AP- GEN- USER- HELP = " NO'
&AP- PROC- DI V- KYWD- SEEN = 1
&AP- FI LE- CONTROL- SEEN = 1
&AP- SUBSCHEMA = " SAMPLSUB"
&AP- APPLI CATI ON-1 D = " JOHND"
&AP- GEN- DATE = "930407"
&AP- GEN-TI VE = "07244461"

--- SUBSCHEMA / PSB FROM APPLI CATI ON DEFI NI TION - --

$DB- SUBSCHEMA(" SAMPLSUB")

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D. SAVPLPGM
AUTHOR. JOHND.

DATE- WRI TTEN. 93/ 04/ 07.
DATE- COVPI LED. &COVPI LETI ME.

User’s Guide

247

248 Chapter 10 Create Batch Programs

ENVI RONVENT DI VI SI ON.

CONFI GURATI ON SECTI ON.
SOURCE- COVPUTER.
OBJECT- COVWPUTER.

I NPUT- QUTPUT SECTI ON.

FI LE- CONTROL.

SELECT | NPUT- CUSTFI LE
ASS|I GN GARYDD

ORGANI ZATION IS LI NE SEQUENTI AL.
SELECT QUTPUT-FI LE
ASSI GN GARYQUT

ORGANI ZATION IS LI NE SEQUENTI AL.

DATA DI VI SI ON.

&SYSTEM
&SYSTEM

FI LE SECTI ON.
FD | NPUT- CUSTFI LE
RECORD CONTAI NS 80 CHARACTERS.
01 | NPUT-REC.
05 | NP- ACTI ON- CODE PIC X(1).
05 | NP- CUSTOVER- NO PI C X(6).
05 | NP-CUSTOVER- NAME PI C X(20).
05 | NP-CUSTOVER- ADDR PI C X(20).
05 INP-CUSTOVER-CITY PIC X(20).
05 I NP- CUSTOMER- ZI P PIC X(9).
05 FILLER PI C X(4).
FD OUTPUT-FI LE
RECORD CONTAI NS 80 CHARACTERS.
01 CQUTPUT- REC
05 QUTPUT- STATUS PIC X(2).
05 QUTPUT- CUSTOVER- NO PI C X(6).
05 QUTPUT- CUSTOVER- NAME PI C X(20).
05 QUTPUT- CUSTOVER- ADDR PI C X(20).
05 CQUTPUT- CUSTOMER-CI TY PI C X(20).
05 QUTPUT- CUSTOMVER- ZI P PIC X(9).
05 CQUTPUT- FI LLER PI C X(3).
WORKI NG- STORAGE SECTI ON.
$TP- W5- MARKER
01 THEFLDS.
05 Ws- CUST- NO PI C X(6).

User’s Guide

Sample Batch Program

01 TEXT- MBG PI C X(30)
VALUE &SQ+PLEASE ENTER NEXT TRANSI D&SQ

PROCEDURE DI VI SI ON.
OPEN | NPUT | NPUT- CUSTFI LE
OUTPUT OUTPUT- FI LE
REPEAT
READ | NPUT- CUSTFI LE
WS- CUST- NO = | NP- CUSTOMER- NO
UNTI L AT END ON | NPUT- CUSTFI LE
EVALUATE | NP- ACTI ON- CODE
WHEN ' Q
PERFORM QUERY- LOGI C
WHEN ' U
PERFORM UPDATE- LOGI C
WHEN ' D
PERFORM DELETE- LOGI C
CLOSE | NPUT- CUSTFI LE
OUTPUT- FI LE

QUERY- LOG C

$DB- OBTAI N ("REC CUSTOMER- REC WHERE CM CUSTOMER _NO = ",

% .. "#W5- CUST-NO')

I F OK- ON- REC
QUTPUT- STATUS ='8Q
PERFORM MOVE- COPYLI B- TO- QUTPUT
PERFORM VRl TE- MSGOUT

ELSE
QUTPUT- STATUS ="uUQ
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM WRI TE- MSGOUT

UPDATE- LOGE C

PERFORM MOVE- | NPUT- TO- COPYLI B

$DB- MODI FY ("REC CUSTOMER- REC WHERE CM CUSTOMER _NO = ",

% .. "#W5- CUST-NO')

I F OK-ON-REC
QUTPUT- STATUS ='SM
PERFORM MOVE- COPYLI B- TO- QUTPUT
PERFORM WRI TE- MSGOUT

ELSE
QUTPUT- STATUS ='W
PERFORM MOVE- COPYLI B- TO- QUTPUT
PERFORM VRl TE- MSGOUT

DELETE-LOGE C

$DB- ERASE (" REC CUSTOMER- REC WHERE CM CUSTOMER NO = ",
% .. "#W5- CUST-NO')

User’s Guide

249

250 Chapter 10 Create Batch Programs

I F OK- ON-REC
QUTPUT- STATUS ='SFE
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VRl TE- MSGOUT

ELSE
QUTPUT- STATUS ='W
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VRl TE- MSGOUT

ADD- LOGE C

PERFORM MOVE- | NPUT- TO- COPYLI B

$DB- STORE (" REC CUSTOMER- REC WHERE CM CUSTOMER NO = ",

% .. "#W5- CUST-NO')

I F OK-ON- REC
QUTPUT- STATUS = 'S8
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VRl TE- MSGOUT

ELSE
QUTPUT- STATUS = 'BS
PERFORM MOVE- | NPUT- TO- QUTPUT
PERFORM VRl TE- MSGOUT

MOVE- | NPUT- TO- OUTPUT
QUTPUT- STATUS
QUTPUT- CUSTOMVER- NO
QUTPUT- CUSTOVER- NAME

OUTPUT- STATUS
I NP- CUSTOVER- NO
I NP- CUSTOVER- NAVE

QUTPUT- CUSTOVER- ADDR = | NP- CUSTOVER- ADDR
QUTPUT- CUSTOVER- CI TY = I NP-CUSTOMVER-CI TY
QUTPUT- CUSTOVER- ZI P = | NP- CUSTOVER- ZI P

MOVE- COPYLI B- TO- OUTPUT

QUTPUT- CUSTOVER- NO = CM CUSTOMER- NO
QUTPUT- CUSTOVER- NAME = CM CUSTOMVER- NAME
QUTPUT- CUSTOVER- ADDR = CM CUSTOMER- ADDR
QUTPUT- CUSTOVER- CI TY = CM CUSTOMER-CI TY
QUTPUT- CUSTOVER- ZI P = CM CUSTOMER-ZI P

MOVE- | NPUT- TO- COPYLI B
CM- CUSTOVER- NO
CM- CUSTOVER- NAMVE
CM- CUSTOVER- ADDR
CM CUSTOMER-CI TY
CM CUSTOMVER- ZI P

I NP- CUSTOVER- NO

I NP- CUSTOVER- NAVE
I NP- CUSTOVER- ADDR
I NP- CUSTOVER- CI TY
I NP- CUSTOVER- ZI P

WRI TE- MSGOUT
WRI TE OUTPUT- REC

User’s Guide

11 Create Reports with Report
Writer

This chapter contains the following sections:

® Concepts of APS Report Writing

® Painting Report Mock-Ups

® (Creating Report Programs

® Generate Multiple SUM or SOURCE Statements
® Mapping Considerations

® Sample Program

Concepts of APS Report Writing

Specify the
physical report
appearance

Paint report
mock-ups

APS report writing features let you produce a report by specifying the
physical appearance of the report, rather than the detailed procedures
necessary to produce that report. Instead of writing COBOL statements
that determine the relationship of output lines, recognize page
overflow, construct headers and footers, recognize logical data groups,
format output lines, map data to output fields, and perform data
calculations, APS sets up the routines needed to produce the report in
the requested format -- all you do is paint a visual representation of
the report and specify which items control the report logic.

First, you paint the report layouts, called mock-ups, in the Report
Painter, which provides a free-form definition facility. You can define
the mock-up by typing literals and output fields to visually represent
the report output. You can specify both floating numeric and
alphanumeric output edit masks directly within the report mock-up.

User’s Guide

251

252 Chapter 11 Create Reports with Report Writer

Reuse report
mock-ups

Define report
logic

Name the input
and output files

Add a Report
Section

Determine your
report groups

User’s Guide

APS for z/OS automatically stores mock-ups in the Application
Dictionary. The mock-ups are available as report templates or for use in
multiple programs.

After you create a mock-up, you define the report logic in the Program
Painter using APS Report Writer structures. Report Writer structures let
you automatically perform paging, calculate field values, test and
execute control breaks, generate multiple reports, and generate all
logic necessary to map fields between reports and databases or files.
You can include multiple reports in a single program.

Using the Program Painter 10 and FD keywords, you name the input
data file, the output report file, and the report itself.

With the Program Painter RED, MOCK, and 01 keywords, you add a
Report Section naming the report and defining the format of each
report named. There are two types of format entries:

® Those that describe the physical aspects of the report format, such
as the maximum number of lines per page, where report lines
appear on the page, and which data items are controls.

® Those that describe the function, format, and characteristics of each
report line.

APS categorizes the report lines into report groups, which are groups of
report lines that make up the headings, body, and footings of the
report. Report groups include the following:

® Report Heading - Header lines that print once at the beginning of a
report. Optionally, it can appear on a page by itself.

® Page Heading - Header lines that print at the top of each page.

® Control Heading - Header lines that print each time a control break
occurs.

® Detail - Detail lines that are the body of the report. Detail lines are
not required for summary reports.

® Control Footing - Line(s) of totals that print at the end of each detail
group, immediately following the detail lines.

® Page Footing - Footer lines that print at the bottom of each page.

® Report Footing - Footer lines that print once at the end of a report.

Further defining
detail lines

Concepts of APS Report Writing 253

Types of Report Groups shows a sample mock-up with the various report

group types.

Types of Report Groups:

Report Heading

Page Heading
Control Heading

Detail Line
Control Footing

Control Footing

Final

Page Footing
Report Footing

WONDERFUL W DGETS | NCORPORATED STOCK
REPORT XXXXXX XXX

M D- ATLANTI C STOCK REPORT XXXXXX XXX

LOCATI ON LAST COUNT QUANTI TY QUANTI TY
QUANTITY DATE I N STOCK | SSUED RECEI VED

XXXXXXXXXXXX 99/ 99/ 99 777,779 77Z, 779
747 4 N

TOTAL BY LOCATION: Z,Z777,779 27,777,779
Z,7277,779

TOTAL NUMBER OF SALES BY LOCATION: ZZZ, 779
TOTAL WONDERFUL W DGETS I N STCCK: Z, 7277, 779
TOTAL WONDERFUL W DGETS | SSUED: Z, 277, 779
TOTAL WONDERFUL W DGETS RECEI VED. Z, 777, 779
TOTAL WONDERFUL W DGETS SOLD. Z, 777, 779

PAGE 7779
*k kK *k END C]: REPm‘r *kkkk*k

Entries for the detail lines which make up the body of the report
describe the characteristics of the data items, such as the format, its
placement in relation to the other data items, and any control factors.
You can use the following statements to define the line contents:

The SOURCE statement maps a data item to the report output field,
using the current value of this data item each time the field prints.

The REFERENCE statement identifies a non-printing data item for
summing in a control footing.

The SUM statement totals the values in the named fields. When a
SUM statement executes, APS automatically:

Creates a Working-Storage SUM accumulator field for each data

Increments the SUM accumulator.
Prints the accumulated values at control break time.

Resets the SUM accumulator to zero after printing.

User’s Guide

254 Chapter 11 Create Reports with Report Writer

Set control breaks

Produce the
report in the
Procedure
Division

User’s Guide

® The VALUE statement designates a literal value to print for the field
each time the line prints.

You use controls to specify how to arrange the data your report
displays. For example, you might want to display detail lines arranged
by sales territories within cities or states or both. You can have up to 28
control breaks. APS processes controls from the most inclusive down to
the least inclusive, that is from major to minor. When a data item
designated as a control changes value, such as a monthly change in a
date field, a control break occurs, and APS does the following for you:

® Prints the detail line that caused the break.

® Prints control headings for any lower-level data items, followed by
the heading for the data item that caused the control break.

® Prints control totals for the current and lower-level data items.

® (Clears all associated counters and accumulators.

In the Procedure Division, you open your input and output files, execute
and print the report, and close the files, using the following three
Report Writer statements:

® The INITIATE statement performs functions in the Report Writer
analogous to the OPEN statement for individual files. INITIATE Logic
Processing illustrates INITIATE processing.

Figure 11-1. INITIATE Logic Processing

Initialize Establish

) SUM Accumulators » Order of
INITIATE Instructions »| o Zeo Control Breaks
. -
Program Logic v
Initialize: Initialize
UMNE-COUMTER - PAGE-COUNTER
o0 wl

® The GENERATE statement produces the body of the report, and
executes and prints the entire report. APS automatically does the
following for you:

® Prints specified headings and footings

® Increments and resets counters and accumulators as necessary

Concepts of APS Report Writing 255

® Obtains source information

® Produces sum information

® Moves values to the data item(s) in the report group entries
® Tests controls

® Prints detail lines

® Pages the report

® Prints the all lines required when a control break occurs

GENERATE Logic Processing and GENERATE Logic Processing
illustrate GENERATE processing.

Figure 11-2. GENERATE Logic Processing

Fragram Logic
A . b4
GENERATE Instruction Add Al Wrile Control
(=3 SUn Footings Lsing
Control - Accurnulators »| Old Values
A Break
No
v
Add Al Wiite Control Set Cortrots
SUM Mo ; Headings To New
- Dietail - - -
Accumulators 4 i Lsing Mewy values
Reporting vales
[Yes
Write Detail
Line
Figure 11-3. GENERATE Logic Processing
. Advance Page Write
Mext Group Mo Wite: and Increment Pnclq\:
Fits Pacy: » Page »| Counter t Heading

Footing

Continwe
Processing

® The optional USE BEFORE REPORTING statement lets you specify any
additional processing you want done to a heading or footing report

User’s Guide

256 Chapter 11 Create Reports with Report Writer

group, such as an additional calculation or a line edit, prior to
printing.

® The TERMINATE statement completes the processing of a report. It is
analogous to the CLOSE statement for individual files. TERMINATE
Logic Processing below illustrates TERMINATE processing.

Figure 11-4. TERMINATE Logic Processing

Program Logic A All S Current Write:
) * UM » Malues for . -Fm llnol
i 5 Contral lems ootings
TERMINATE Instructions Accumlators
'y
v
Wirite: Write Final Reset Controls
Report Control Footing To Current
Feating - Group walues

Use special APS Report Writer provides two special counters that you can use in any
counters Procedure Division statement:

® You can reference LINE-COUNTER to determine when to print a
PAGE HEADING or a PAGE FOOTING report group. The maximum
value of the LINE-COUNTER is based on the number of lines per
page specified in the PAGE LIMIT(S) clause.

® You can reference PAGE-COUNTER in a SOURCE statement to print
the page number.

View sample Sample Report Program Structure shows a sample report program
reports structure. Sample Program shows a report mock-up, complete APS
program code, generated COBOL source code, and printed report.

Sample Report Program Structure

INPUT-OUTPUT SECTION

10 SELECT st at enent

FILE SECTION

FD inputfile FD clauses

User’s Guide

01
FD

Concepts of APS Report Writing

recordnane PI C pi ccl ause
reportfile FD cl auses
REPORT | S | REPORTS ARE cl ause

REPORT SECTION

KYWD 12-%----20---%-==-30---%--==40---*---50---%--

RED

reportfilenane

CODE cl ause

CONTROL cl ause

WRI TE ROUTI NE cl ause
PAGE LIMT cl ause

FI RST DETAIL cl ause
LAST DETAI L cl ause
FOOTI NG cl ause

MOCK nockupr eport nane

Report Group Types:

Header Types (Report, Page, and Control Headers)

KYWo 12-%----20---%----30---%----40---%----50---%--
01 TYPE cl ause for report, page or control header
MOCKUP LI NES cl ause
SOURCE cl ause | VALUE cl ause

Detail Line Type

KYW 12-#%----20---%----30---%----40---*----50---%--
01 TYPE DETAI L

MOCKUP LI NES cl ause

SOURCE cl ause | VALUE cl ause

REFERENCE cl ause

Footer Types (Report, Page, and Control Footers)

KYW 12-%----20---%----30---%----40---%*----50---%--
01 TYPE cl ause for report, page or control header
MOCKUP cl ause
SOURCE cl ause | VALUE cl ause
SUM cl ause

PROCEDURE DIVISION

KYWD 12-%----20---%-==-30---%--==40---*---50---%--
NTRY |
PROC

User’s Guide

257

258 Chapter 11 Create Reports with Report Writer

I NI TI ATE st at enent

GENERATE st at enent

TERM NATE st at enent

Sample Report Program Code

“KYWD- 12-%----20---%--=-30---%---=40---*----50---*-
IO INPUT-FILE ASSIGN TO UT- S FI LEI N.
IO REPORT- QUTPUT- FI LE ASSI GN TO UT- S- REPTOUT.

FD I NPUT- FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 CHARACTERS.
01 PART- STOCK- REC PI C X(80).

FD REPORT- QUTPUT- FI LE
LABEL RECORDS ARE STANDARD
REPCORT |'S STOCK- REPORT.
RED STOCK- REPORT
CONTRCLS ARE FI NAL Ws- LOCATI ON- CODE
PAGE LIMT IS 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.

MOCK STCKRPT

01 TYPE IS REPORT HEADI NG NEXT GROUP NEXT PAGE
LI NE 20.
MOCKUP LI NES 1 THRU 6
SOURCE WS- DATE

01 TYPE IS PAGE HEADI NG

MOCKUP LI NES 7 THRU 9
SOURCE WS- DATE

User’s Guide

Painting Report Mock-Ups 259

NTRY
OPEN | NPUT | NPUT- FI LE
... QUTPUT REPCRT- QUTPUT- FI LE
ACCEPT W5- DATE- HOLD FROM DATE

Painting Report Mock-Ups

To paint report mock-ups, perform the following steps:

1 Access the Report Painter
To access the Report Painter to create a new report mock-up or edit
a current mock-up, do one of the following:

® From the Application Painter:

® Enter a report mock-up name in the Reports field associated
with your program.

® Enter s in the selection field next to the name and press
Enter.

® From the APS Painter Menu:

® To edit a report mock-up, type rp in the Type field and the
report mock-up name in the Member field. Then press Enter.

® To browse a report mock-up, type b in the Command field, rp
in the Type field, and the mock-up name in the Member
field. Then press Enter.

® To display a member list from which to select mock-ups, type
rp in the Type field, leave the Member field blank, and press
Enter. Then select the member from the member list.

Paint the mock-up 2 To create a mock-up, type the literals and output fields in columns 1
through 247, as follows.

® To create a literal field, type the literal characters.

User’s Guide

260 Chapter 11 Create Reports with Report Writer

User’s Guide

® To create an output field, type a PIC character string, for
example Z,2ZZ,ZZ9 or XXXXX. You can use the following COBOL

edit masks:

® Floating numeric formats, including: * $ +-5S92Z

® Alphanumeric masks

Figure 11-5. Creating a Prgram Mock-Up

EDIT ——— REPORT: REPDRT ————- - e e mmmm e COLUKHS 881 B

COMMAND ===> SCHOLL ===> L8H
cecnsn TOP OF DATA <

dua1ey WOKDERFUL WIDEETS INCURPOHRIED

AHADAH

AUN3NY STOCK REPORT

AHARAH

480508 RRAHRH HHH

AAAGAR -

aei 188 KID RILANLIC

AARGRE STOCK REPORT

LR RRARRR RRR

paigns . . .

BU1180 LOCATION LAST COUKT QURKIIEY 1IN QUANIIIY UAKIETY

81308 pATL STOCK 1S8IED LCLIUED

HETARA HYNHRANHRANE 99499499 177,779 127,719 222,719

481588

4H1788 TUTAL BY LOCRTION: 1,222,229 Ly 1242019

WUI988 (UTAL HUMBER UF SALES BY LOCRIION: 122,429

e BOTTON OF DATA

3 Use ISPF editor commands to edit the text. To view a mock-up larger
than your screen, press F10 and F11 to scroll left and right.

Special Considerations

® \When you add or delete a line from your report mock-up, always
renumber the line numbers, so you can accurately reflect them in
your report program code. To do so, type ren or renum in the

Command line and press Enter.

® The first character of the report mock-up name must be alphabetic,
@, or #; the remaining characters can be alphabetic, numeric, @, $,

or #.

® Reports can be a maximum of 200 lines and 247 columns.

® In your program, the data field PIC strings on the mock-up must
match the detail line data item descriptions in your Report Section.

Creating Report Programs

Report Writer matches the mock-up fields to the program field
descriptions from left to right, from top to bottom.

The report mock-up determines the columns where literals and data
items print. Your report program code determines the lines where
they print.

APS stores report mock-ups in your APS Project Group APSREPT data
set.

Creating Report Programs

To create a batch report program in the Program Painter, follow these
steps:

Specify DB and DC 1
targets

Access the 2

program

Code the 3
input/output
statements

To specify your DB and DC targets in the Application Painter, follow
steps 2 and 3 in Creating Batch Programs.

To create or edit a program, do one of the following:

® From the Application Painter, type the program name in the
Program field on the same line as its associated mock-up, and
type s in the selection field next to the program name. Then
press Enter.

® From the APS Painter Menu, type the program name in the
Member field and press Enter. Or, leave the Member field blank,
press Enter, and then select the applicable member from the
member list.

Specify the FILE-CONTROL SELECT information with the Program
Painter 10 keyword. Use the following format:

10 filename ASSIGN [TQ systemane
Appl i cabl e COBOL FI LE- CONTROL cl auses

Code the program input file description with the Program Painter
FD keyword, as follows:

FD i nput fil enane
LABEL RECORDS cl ause
BLOCK CONTAI NS cl ause

User’s Guide

261

262 Chapter 11 Create Reports with Report Writer

[Oher applicable COBOL FD cl auses]

01 i nput recordnane

For example:

PI C cl ause.

“KYWD- 12-%---20---%--=-30---%----40---*-u--
FD I NPUT-FILE

LABEL RECORDS ARE STANDARD

BLOCK CONTAINS 0 CHARACTERS

01 PART- STOC- REC

PI C X(80).

5 Determine the output record size. The default size is 133, the
standard mock-up size of 132 plus 1 byte for the carriage control
character. To define a different report record size, calculate the size

as follows:

Record Size = Report mock-up size (maximum 247 characters)
+ 1 byte for carriage control
+ 2 bytes for the CODE clause, if used.

6 Then, code the program output file description with the Program
Painter FD keyword, as follows. To accept the default record size,
omit the RECORD CONTAINS clause.

-KYWD- 12-*%----20---%----30---%----40---%----
FD outputfil ename
LABEL RECORDS cl ause
[RECORD CONTAI NS cl ause]
[&her applicable COBOL FD cl auses]

REPORT | S| ARE reportnanel [...
01 out put r ecor dnanme

reportnanmel5]
PI C cl ause.

For example:

“KYWD- 12-%---20---%--=-30---%----40---*-u--
FD REPORT- QUTPUT- FI LE
LABEL RECORDS ARE STANDARD
REPORT | S STOCK- REPORT

W5 WS- PART- STOC- REC.

05
05

05
05
05

User’s Guide

WS- LOCATI ON- CODE VALUE SPACES.

WS- LAST- COUNT- DATE.

PIC X(12)

10 WS- LAST- COUNT- MONTH PI C 99 VALUE 0.
10 W5 LAST- COUNT- DAY PI C 99 VALUE 0.
10 WS- LAST-COUNT-YEAR PIC 99 VALUE 0.
WS- QTY- | N- STOCK PI C 9(6) VALUE 0.
WS- QTY- | SSUED PI C 9(6) VALUE 0.
WS- QTY- RECEI VED PI C 9(6) VALUE 0.

Add Working-
Storage entries

Identify the
report

Describe the
printed page

Creating Report Programs

05 W5- NO- OF- SALES PI C 9(6) VALUE 0.
05 FILLER PI C X(40) VALUE SPACES

After the output record description, add any Working-Storage
entries needed for your report at this point in your program. For
example:

“KYWD- 12-%---20---%--=-30---%---=40---*----
W6 WB- DATE.

05 WS- DATE- MM PIC 9(2).

05 WS- DATE- DD PIC 9(2).

05 WS- DATE-YY PIC 9(2).
WS WS- DATE- HOLD.

05 WS- DATE- YY- X PIC 9(2).

05 WS- DATE- MV X PIC 9(2).

05 WS- DATE- DD- X PIC 9(2).

To identify the report, code the RED keyword and the report name,
as follows:

-KYWD- 12-*----20---*----30---*%----40---*----
RED reportnane

For example:

“KYWD- 12-%---20---%--=-30---%---=40---*----
RED STOCK- REPORT

Identify the data items to test for a control break. The order in
which you code the data items creates the control hierarchy, where
FINAL is the highest control, the first data item is the major control,
and the last data item is the minor (lowest) control. Use the
following syntax:

-KYWD- 12-*----20---*----30---*%----40---*----
RED reportnane
[CONTROL [I'S] | CONTROLS [ARE] [FI NAL]
dat ananel ... [datananeN]

For example:

“KYWD- 12-%- - -20---%--=-30---%---=40---*-u--
RED STOCK- REPORT
CONTROLS ARE FI NAL WS- LOCATI ON- CODE

User’s Guide

263

264 Chapter 11 Create Reports with Report Writer

User’s Guide

10 Optionally specify the length and vertical subdivisions of the printed
page, as follows:

a

Code the number of printable lines on each page in the PAGE
LIMIT option.

Code the line number where you want the first control heading
line or detail line of the report body to print on each page in
the FIRST DETAIL option. Remember to leave space at the top of
the page for any report heading and page heading lines when
calculating the first detail line number.

Code the line number where you want the last detail line of the
report body to print on each page in the LAST DETAIL option.
Remember to leave space at the bottom of the page for any
control break lines, page footing lines, and report footing lines
when calculating the last detail line number.

Code the line number where you want the last control footing
line to print for each page in the FOOTING option. Remember to
leave space at the bottom of the page for any page footing and
report footing lines when calculating the last control footing
number.

Use the following syntax:

-KYWD- 12-*----20---%----30---*%----40---*----
RED reportnane
[CONTROL [I'S] | CONTROLS [ARE] [FINAL]

dat ananel ... [datananeN]
[PAGE [LIMT IS | LIMTS ARE] nunber
[LI NE|] LI NES]

[FI RST DETAIL firstlinenunber]
[LAST DETAI L [ast!inenunber]
[FOOTI NG footingli nenunmber]] .

For example:

-KYWD- 12-*----20---*----30---*%----40---*----
RED STOCK- REPORT
CONTRCLS ARE FI NAL Ws- LOCATI ON- CODE
PAGE LIMT IS 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.

Identify the
mock-up

Identify each
report group

1

12

01

Creating Report Programs

Specify the mock-up named in the Application Painter and painted
in the Report Painter with the MOCK keyword, as follows:

MOCK STOCKRPT

Identify each report group with the Program Painter 01 keyword
and the TYPE clause, as follows:

a Code an 01 TYPE statement for each report group. Note that:

® You must assign an identifying data name for the DETAIL
report group, the report body. Identifiers for the other
report groups are optional. You use these identifying data
names in the Procedure Division to refer to the various report
groups.

® The TYPE statements for CONTROL HEADING and CONTROL
FOOTING report groups must indicate the name of control
break field that causes the control break. This control data
name must correspond to a data item specified in the
CONTROLS option of the RED statement.

b For each report group, you can optionally designate the line
number where the first line of the report group prints, using the
LINE option.

¢ For each report group, you can optionally designate the line
number where the first line of the next report group prints,
using the NEXT GROUP option.

Use the following syntax:

PAGE HEADI NG
PAGE FOOTI NG
REPORT HEADI NG

[identifier] TYPE IS REPORT FOOTI NG
CONTROL HEADI NG [FI NAL] | cont rol nane
CONTROL FOOTI NG [FI NAL] | cont rol nanme
DETAI L
number

[LINE [NUMBER | S] PLUS nunber
NEXT PAGE]

User’s Guide

265

266 Chapter 11 Create Reports with Report Writer

number
[NEXT GROUP [IS] PLUS nunber
NEXT PAGE]

For example:

-KYWD- 12-*----20---*----30---%----40---*----

MOCK STOCKRPT

01 TYPE |'S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE

01 TYPE IS PAGE HEADI NG
NEXT GROUP PLUS 3

01 TYPE IS CONTROL HEADI NG W5- LOCATI ON- CODE
NEXT GROUP PLUS 1

01 PART- DETAIL TYPE IS DETAIL
NEXT GROUP PLUS 1

01 TYPE IS CONTROL FOOTI NG W5- LOCATI ON- CODE

01 TYPE IS CONTROL FOOTI NG FI NAL

01 TYPE IS PAGE FOOTI NG

01 TYPE IS REPORT FOOTI NG
LI NE PLUS 2

Map report lines 13 To map the each report group to the mock-up, follow each TYPE
to the mock-up clause with a MOCKUP clause, as follows:

-KYWD- 12-*%----20---%----30---%----40---%----
MOCKUP LI NE[S] /i nenunmberl1 [THRU | inenunmber N

For example, the following code:

-KYWD- 12-*----20---*----30---*%----40---*----
MOCK STOCKRPT
01 TYPE | S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE
MOCKUP LI NES 1 THRU 5
01 TYPE IS PAGE HEADI NG
NEXT GROUP PLUS 2
MOCKUP LI NES 6 THRU 8
01 TYPE IS CONTROL HEADI NG W5- LOCATI ON- CODE
MOCKUP LI NES 10 THRU 12
01 PART- DETAIL TYPE IS DETAIL
NEXT GROUP PLUS 1
MOCKUP LI NE 13
01 TYPE IS CONTROL FOOTI NG W5- LOCATI ON- CODE
MOCKUP LI NES 14 THRU 19
01 TYPE IS CONTROL FOOTI NG FI NAL
MOCKUP LI NES 20 THRU 24
01 TYPE IS PAGE FOOTI NG
LI NE PLUS 2

User’s Guide

*kkkkk

MOCKUP LI NE 25

01 TYPE |'S REPORT FOOTI NG

LI NE PLUS 2
MOCKUP LI NE 27

Corresponds to the following mock-up:

Creating Report Programs

***************************TOD C]: DATA*************************

oo I Y

000100 WONDERFUL W DGETS | NCORPORATED

000200 M D- ATLANTI C

000300 STOCK REPORT

000400 XXXXXX XXX

000500

000600 M D- ATLANTI C

000700 STOCK REPORT

000800 XXXXXX XXX

000900

001000 LOCATI ON LAST COUNT QUANTI TY QUANTI TY QUANTI TY
001100 DATE I N STOCK | SSUED RECEI VED
001200

001300 XXXXXXXXXXXX 99/ 99/ 99 277,779 77,779 77,779
001400

001500 eeeeeemem meeeoaa e oo
001600 TOTAL BY LOCATI ON: Z,777,779 Z,2772,779 Z,777,779
001700

001800 TOTAL NUMBER OF SALES BY LOCATI ON: 277,779

001900

002000 TOTAL WONDERFUL W DGETS I N STOCK: Z,7277, 779

002100 TOTAL WONDERFUL W DGETS | SSUED: Z,7277, 779

002200 TOTAL WONDERFUL W DGETS RECEI VED: Z,7277, 779

002300 TOTAL WONDERFUL W DGETS SOLD: Z,7277, 779

002400

002500 PAGE 7779

002600

002700 ¥*x** END OF REPORT *****

002800

002900

Map report fields 14 For the applicable report groups, indicate which data items supply

to the mock-up

following guidelines:

values to output fields with the SOURCE statement. Use the

® Map the data items within the report group from left to right,
top to bottom, as they will appear on the printed report.

® Include picture clauses if multiple fields are strung together on
the mock-up. A PIC clause indicates the next matching COBOL

User’s Guide

267

268 Chapter 11 Create Reports with Report Writer

picture in the mock-up is the COBOL picture for this data item.
See also Special Considerations.

® Optionally print spaces when the value of the field is zero by
specifying the BLANK WHEN ZERO option.

® Optionally justify the field value with the JUSTIFIED RIGHT
option.

® Optionally print the value of the field only when it changes
value with the CHANGE INDICATE option.

® Optionally print the value of the field only on the first
occurrence of the report group after a control break or a page
advance with the GROUP INDICATE option.

Use the following syntax:

-KYWD- 12-*%----20---%----30---%----40---%----
SOURCE [| S] datanane [Pl C piccl ause]
[BLANK [WHEN] ZERQC]
[JUSTI FI EDy JUST [RI GHT]
[CHANGE | NDI CATE| GROUP | NDI CATE]

For example:

- KYWD- 12-*----20---*----30---*%----40---*----50---*----60
01 TYPE | S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE
MOCKUP LINES 1 THRU 5
SOURCE | S W5- DATE
01 TYPE IS PAGE HEADI NG
NEXT GROUP PLUS 3
MOCKUP LI NES 6 THRU 8
SOURCE | S W5- DATE
01 PART- DETAIL TYPE IS DETAIL
NEXT GROUP PLUS 1
MOCKUP LI NE 13
SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH
SOURCE WS- LAST- COUNT- DAY
SOURCE WS- LAST- COUNT- YEAR
SOURCE WS- QTY- 1 N- STOCK
SOURCE WS- QTY-1 SSUED
SOURCE W5- QTY- RECEI VED
01 TYPE IS PAGE FOOTI NG
LI NE PLUS 2
MOCKUP LI NE 24
SOURCE | S PAGE- COUNTER

User’s Guide

15

16

Creating Report Programs

Define any non-printing detail items that you want Report Writer to
sum and total for control breaks, such as an employee count or the
number of sales in a given location, with the REFERENCE statement.
A REFERENCE field value never displays when the detail line prints.
If you code a corresponding SUM statement (see the next step), APS
adds the field value to an internal sum accumulator.

Name the data item and define its format, as follows:
REFERENCE [| S] dat anane PIC piccl ause
For example:

- KYWD- 12-*----20---*----30---*----40---*----50---*----60
01 PART- DETAIL TYPE IS DETAIL
NEXT GROUP PLUS 1
MOCKUP LI NE 13
SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH
SOURCE WS- LAST- COUNT- DAY
SOURCE WS- LAST- COUNT- YEAR
SOURCE WS- QTY- 1 N- STOCK
SOURCE WS- QTY-1 SSUED
SOURCE WS- QTY- RECEI VED
REFERENCE W6- NO- OF- SALES PI C 9999

See also Special Considerations.

For the CONTROL FOOTING report groups, sum the data items,
previously identified with a SOURCE or REFERENCE statement, for
control breaks with the SUM statement. Use the following
guidelines:

® Sum the data items within the report group from left to right,
top to bottom, as they will appear on the printed report.

® |fthe report has more than one detail line, use the UPON option
to name the line where the summing takes place.

® To override the APS default of resetting SUM accumulators to
zero after each control break, use the RESET option to do a
running total and specify which control break should reset the
accumulator.

® To automatically move the value in the Report Writer field
accumulator to a field you can reference in the Procedure
Division, for example, to test the field or do further calculations,

User’s Guide

269

270 Chapter 11 Create Reports with Report Writer

create the field by naming it in the DATA-NAME fieldname
option.

® Include a picture clause for SUM statements if multiple fields are
strung together on the mock-up. A PIC clause indicates the next
matching COBOL picture in the mock-up is the COBOL picture
for this data item. See also Special Considerations.

Use the following syntax:

SUM dat aname [dat anane] .
[UPON detlineidentifier [detlineidentifier] ...]
[RESET [FI NAL] control nane]
[DATA- NAME fi el dnane]
[PI CTURE piccl ause]

For example:

“KYWD- 12-%-2--20---%--=-30---%---=40---*----50---*----60
MOCK STOCKRPT

01 TYPE | S REPORT HEADI NG
NEXT GROUP | S NEXT PAGE
MOCKUP LI NES 1 THRU 5
SOURCE WS- DATE

01 TYPE IS PAGE HEADI NG

NEXT GROUP PLUS 3

MOCKUP LI NES 6 THRU 8
SOURCE WS- DATE

01 TYPE IS CONTROL HEADI NG W5- LOCATI ON- CODE
MOCKUP LI NES 10 THRU 12

01 PART- DETAIL TYPE IS DETAIL
NEXT GROUP PLUS 1
MOCKUP LI NE 13
SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH
SOURCE WS- LAST- COUNT- DAY
SOURCE WS- LAST- COUNT- YEAR
SOURCE WS- QTY- 1 N- STOCK
SOURCE WS- QTY-1 SSUED
SOURCE WS- QTY- RECEI VED
REFERENCE W5- NO- OF- SALES PI C 9999

01 TYPE IS CONTROL FOOTI NG WS- LOCATI ON- CCDE

MOCKUP LI NES 14 THRU 18
MOCKUP LI NES 19 THRU 22

User’s Guide

Code the report
logic

01

01

01

Creating Report Programs

SUM WS- QTY- | N- STOCK
SUM W&- QTY- | SSUED
SUM W5- QTY- RECEI VED
SUM W5- NO- OF- SALES

TYPE IS CONTROL FOOTI NG FI NAL
MOCKUP LI NES 19 THRU 22

SUM WS- QTY- | N- STOCK

SUM W&- QTY- | SSUED

SUM W&- QTY- RECEI VED

SUM WS- NO- OF- SALES

TYPE IS PAGE FOOTI NG
LI NE PLUS 2

MOCKUP LI NE 24

SOURCE | S PAGE- COUNTER

TYPE IS REPORT FOOTI NG
LI NE PLUS 3
MOCKUP LI NE 26

17 Code the Procedure Division logic under the NTRY (or PROC)
keyword to produce and generate the report, as follows:

a Initialize all report counters and set up control heading and
footing items with the INITIATE statement.

b Process the detail lines with a GENERATE statement. If the
report has multiple detail lines, code multiple GENERATE
statements.

¢ End report processing with the TERMINATE statement.

Use the following structure:

~KYWD- 12-%----20---%--=-30---%----40---*----50---

NTRY

OPEN | NPUT fil enanel
OUTPUT fil enane2

I NI TI ATE report nane

GENERATE det ! i nei denti fi er

User’s Guide

271

272 Chapter 11 Create Reports with Report Writer

TERM NATE report nane

CLCSE fil enanel fil enane2
For example:

NTRY
OPEN | NPUT | NPUT- FI LE
... OUTPUT REPCRT- QUTPUT- FI LE
ACCEPT WS- DATE- HOLD FROM DATE
MOVE W6- DATE- YY- X TO W6- DATE- YY
MOVE W6- DATE- M+ X TO WS- DATE- MM
MOVE W5- DATE- DD- X TO Ws- DATE- DD
I NI TI ATE STOCK- REPORT
REPEAT
READ | NPUT- FI LE | NTO WS- PART- STOCK- REC
UNTI L AT END ON | NPUT-FI LE
GENERATE DETAI L- LI NE
TERM NATE STOCK- REPORT
CLCSE | NPUT- FI LE
REPORT- QUTPUT- FI LE

18 Repeat steps 7 through 17 for each report named in the File Section
REPORT clause.

Special Considerations

® If you define a report record with the WRITE ROUTINE clause, the
default record size is 248. If your RED keyword statement includes
the CODE clause, the default value is 250. For more information, see
the APS Reference.

® Report Writer treats each report group specified in the TYPE clause
as a unit and always prints the entire group on one page--it never
begins the group on one page and completes it on another.

® You can add Working-Storage entries before the I/O description at
the beginning of the program, after the output record description,
after an 01 TYPE statements, and after yout Procedure Division
code.

® When identifing controls in the CONTROL clause, dataname must be
an elementary data name. In the following example, B cannot be
used as a control variable because it is a group data item. To make B

User’s Guide

Creating Report Programs

into an elementary data item, use the REDEFINES clause as shown
below:

Ws01 A PIC X(2).
Ws01 B.
02 B1 PIC 9(4).
02 B2 PIC 9(4).
WS01 B- REDEF REDEFI NES B PIC X(8).

RED TEST- REPORT
CONTROLS ARE A B- REDEF

APS creates an internal SUM accumulator field for each data item
specified. The name of this field is dataname-nnnn, where nnnn is a
4-digit number. Each time the detail line containing the data item
prints, APS adds its value to the accumulator. APS clears the
accumulators either after each control break (the default) or after a
control break you specifiy with the RESET option.

If a data item contains a PIC clause in a SOURCE or SUM statement,
it indicates that the next matching COBOL picture in the mock-up is
the COBOL picture for the statement. APS compares it with an equal
number of the next unassigned characters. If no match occurs, the
comparison moves one position to the right until a match is found.
If no match is found, an error message is printed. For example:

Report mock-up:

000001 A TEST PROGRAM

000002

000003 FIELD-1 FI ELD- 2 FI ELD- 3
000004 XXXX XXXX XXXX

Report program:

-KYWD- 12-*----20---*----30---*%----40---*----
01 DET-LI NE TYPE DETAIL LI NE.

MOCKUP LI NE 4

SOURCE DATA-1

SOURCE DATA-2

SOURCE DATA-3 PI C X(2)

SOURCE DATA- 4

Report Writer matches DATA-1 and DATA-2 directly to the mock-up.
It then matches the PIC clause in the SOURCE statement for DATA-3
to the first two X characters under FIELD-3, and the two remaining

User’s Guide

273

274 Chapter 11 Create Reports with Report Writer

X characters to DATA-4. If you omit the PIC clause on the DATA-3
SOURCE statement, an error occurs. If you omit the DATA-4 SOURCE
statement, APS considers the XX a literal, because there are no
source statements remaining.

When you code a REFERENCE statement, the PIC clause must match
the PIC clause in the record description. For example:

01 COST- DETAI L TYPE DETAI L
MOCKUP LI NE 9
SOURCE WS- DEPT
SOURCE W5- EMPLOYEE
SOURCE W5-CI TY
REFERENCE EMP-CTR PI C 999
01 TYPE CONTROL FOOTI NG
MOCKUP LI NE 9
SOURCE WS- DEPT
SUM EMP- CTR
W501 EMP-CTR PI C 999 VALUE 1.

If one of the PIC clauses were PIC 9(3), Report Writer would not find
a match.

In a REFERENCE statement, the data item referenced must be
defined in Working-Storage with a VALUE clause. The value in the
VALUE clause tells Report Writer the increment to add to the
internal accumulator each time the detail line prints. In the previous
example, APS adds 1 to the internal accumulator whenever the
detail line prints.

Generate Multiple SUM or SOURCE

Statements

User’s Guide

Instead of coding individual statements to source or sum sequential
suffixed data items or array elements, APS provides an iterative
expression feature that lets you code only one SOURCE or SUM
statement, which generates multiple statements.

Generate Multiple SUM or SOURCE Statements

Suffixed Data Elements

The iterative expression syntax for suffixed data elements is:

dat ai tem #startnun/ endnuni /i ncnum |

where the pound sign (#) indicates the starting number of an iteration;
startnum and endumn indicate the range of the iteration. The slash (/)

between them generates a THRU. The incnum is the number by which

the iteration is incremented (default is 1); its leading slash generates a

BY. For example:

SOURCE MONTH-#1/ 6 BLANK WHEN ZERO

generates an iteration of six SOURCE statements, suffixed numerically, 1
through 6, for example, MONTH-1 through MONTH-6. If you specify
only one number, the iteration assumes the starting number to be 1. For
example, SOURCE MONTH-#6 is equivalent to SOURCE MONTH-#1/6.

Without the iterative expression, you would code the above statement
as follows:

SQURCE MONTH-1 BLANK WHEN ZERO
SOQURCE MONTH-2 BLANK WHEN ZERO
SOQURCE MONTH-3 BLANK WHEN ZERO
SOQURCE MONTH-4 BLANK WHEN ZERO
SOQURCE MONTH-5 BLANK WHEN ZERO
SOQURCE MONTH-6 BLANK WHEN ZERO

In the following example, the four SUM statements:

SUM MONTH- 9- DATA

SUM MONTH- 10- DATA
SUM MONTH- 11- DATA
SUM MONTH- 12- DATA

can instead be coded as:

SUM MONTH- #9/ 12- DATA

The following example increments an iteration of SOURCE statements
by 2 instead of the default 1:

SOURCE ELEMENT-#6/ 12/ 2

which generates:

SQURCE ELEMENT- 6

User’s Guide

275

276 Chapter 11 Create Reports with Report Writer

User’s Guide

SQURCE ELEMENT- 8
SQURCE ELEMENT- 10
SQURCE ELEMENT-12

The PIC clause for each SUM or SOURCE statement generated by the
iterative expression is taken from the mock-up. APS matches the mock-
up and detail line data item descriptions as the increment statements
generate.

Array Items

The iterative expression syntax for a complex array is:

arrayi tem (#startnumil|/ endnuml[/incnumi]][)]
[,#startnune[/ endnune[/incnung]]][)]
[,#startnunB[/endnunB[/incnunB]]])

Parentheses indicate an array. Use up to three # symbols to indicate
three dimensions of an array. Separate the subscript ranges with
commas. All of the symbols used for generating suffixed data items,
above, apply to each array range.

Each dimension is described by a separate Data Division entry with an
OCCURS clause.

The SOURCE statements in the following example, which reference a 2
by 3 array:

SOURCE ARRAY-I| TEM (1, 1)
SOURCE ARRAY-I| TEM (1, 2)
SOURCE ARRAY-I TEM (1, 3)
SOURCE ARRAY-I| TEM (2, 1)
SOURCE ARRAY-I| TEM (2, 2)
SOURCE ARRAY-I| TEM (2, 3)

can, instead, be coded as:
SOURCE ARRAY- | TEM (#2, #3)

The following example produces SUM statements for each element of a
three dimensional array of 3 by 2 by 3.

SUM TABLE ELEMENT (#3, #2, #3)

Mapping Considerations 277

The following iterative expressions are examples of ranges within a one
dimensional array:

SUM EXT- SALES- DOLLARS (#1/ 3) PIC Z, 7279
SUM QTR- 1- SALES- DOLLARS PIC ZZ, 279
SUM EXT- SALES- DOLLARS (#4/ 6) PIC Z, 7279
SUM QTR- 2- SALES- DOLLARS PIC ZZ, 279
SUM EXT- SALES- DOLLARS (#7/9) PIC Z, 7279
SUM QTR- 3- SALES- DOLLARS PI C ZZ, 279
SUM EXT- SALES- DOLLARS (#10/12) PIC Z,ZZ9
SUM QTR- 4- SALES- DOLLARS PIC ZZ, 279
SUM YR- SALES- DOLLARS PIC $3$33, $$$

Mapping Considerations

The sequence in which mock-up fields are matched with the data item
descriptions is the same as a page of text is read--from left to right
across each line of the mock-up starting with the top line and
continuing to the bottom.

APS matches the report mock-up fields to the data item description
entries in your program according to the following rules:

® APS considers the following to be literals:
® The COBOL picture character A.
® Any one or more consecutive non-space, non-picture characters.

® Anysingle COBOL picture character, that is preceded and
followed by a space. Exception to this rule: 9 and X.

® Astring of hyphens because of its frequent use for underlining.

® APS considers a single COBOL picture character, such as -, X, Z, or 9,
that is embedded in a string of non-blank, non-picture characters as
part of a literal. For example, the following are literals:

1979
WKYZ
EXTRA
W ZARD

User’s Guide

278 Chapter 11 Create Reports with Report Writer

User’s Guide

and the following are pictures beside literals:

#99 Literal is #, PICis 99.
1 999 Literal is |, PICis 999.
Section-999 Literal is SECTION, PICis -999.

APS considers any legal COBOL picture longer than one character to
be a COBOL picture, except for the letter S and the hyphen (-), and
matches it to the next data item description in the program.

APS generates a VALUE statement for each literal in the mockup,
and does not match the literal with the data item descriptions in the
program.

APS considers any consecutive PIC characters in the mock-up as one
PIC character string, unless the string is matched with PIC clauses in
multiple, consecutive SOURCE statements.

APS assigns each PIC character string as the PIC for the next
sequential data item description, unless the next description
contains a PIC clause.

When a data item description contains a PIC clause, APS compares it
with an equal number of characters in the mock-up, starting with
the next sequential, unassigned character in the mock-up.

When comparing a data item description entry with a PIC clause to
an equal number of characters in the mock-up and a non-match
occurs, APS continues the comparison by moving one position to the
right until it finds a match. APS considers the non-matched
characters from this process to be a literal, and generates a VALUE
entry that precedes the data item description with the PIC clause
that initiated the comparison.

When a PIC clause in a data item description does not match any
series of mock-up characters from the start of a comparison to the
end of the mock-up, APS terminates processing and generates an
error message.

Sample Program 279

Sample Program

This topic includes the report mock-up, complete program, the
generated source code, and the final printed report for the sample
program illustrated in the procedure for Creating Report Programs.

Program Painter ~ KYWD 12-- +--20-- +-- - +-30+-- - +- - = 40- - +- - - +- 50+- - - +- - -
source 10 I NPUT-FILE ASSI GN TO UT-S-FI LEI'N.
IO REPORT- QUTPUT- FI LE ASSI GN TO UT- S- REPTOUT.

FD | NPUT-FI LE
LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 0 CHARACTERS.
01 PART-STCOCK- REC PI C X(80).

FD REPORT- OUTPUT-FI LE
LABEL RECORDS ARE STANDARD
REPORT | S STOCK- REPORT.

W5 WS- PART- STOCK- REC.
05 WS- LOCATI ON- CODE
PIC X(12) VALUE SPACES.
05 W6- LAST- COUNT- DATE.

10 WS- LAST- COUNT- MONTH PIC 99 VALUE 0.
10 WS- LAST-COUNT-DAY PIC 99 VALUE 0.
10 WS- LAST-COUNT-YEAR PIC 99 VALUE 0.
05 W8 QTY- | N- STOCK PIC 9(6) VALUE 0.
05 W& QTY- | SSUED PIC 9(6) VALUE 0.
05 W8 QTY- RECEI VED PIC 9(6) VALUE 0.
05 W8 NO- OF- SALES PIC 9(4) VALUE 0.
05 FILLER
...PIC X(40) VALUE SPACES.
WS W\B- DATE.
05 W& DATE- MM PIC 9(2).
05 W& DATE- DD PIC 9(2).
05 WS- DATE-YY PIC 9(2).
WS W8 DATE- HOLD.
05 WS- DATE- YY- X PIC 9(2).
05 W& DATE- MV X PIC 9(2).
05 W& DATE- DD- X PIC 9(2).

RED STOCK- REPORT
CONTRCLS ARE FI NAL WS- LOCATI ON- CODE
PAGE LIMT IS 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.

User’s Guide

280 Chapter 11 Create Reports with Report Writer

MOCK STCKRPT
01 TYPE IS REPORT HEADI NG NEXT GROUP
NEXT PAGE

MOCKUP LI NES 1 THRU 6
SOURCE WS- DATE

01 TYPE IS PAGE HEADI NG
MOCKUP LI NES 7 THRU 9
SOURCE WS- DATE

01 TYPE IS CONTROL HEADI NG W5- LOCATI ON- CODE.
MOCKUP LI NES 10 THRU 13

01 DETAIL-LINE TYPE IS DETAIL.
MOCKUP LI NE 14
SOURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SOURCE WS- LAST- COUNT- MONTH PI C 99
SOURCE WS- LAST- COUNT- DAY PI C 99
SOURCE WS- LAST- COUNT- YEAR PI C 99
SOURCE WS- QTY- 1 N- STOCK
SOURCE WS- QTY- | SSUED
SOURCE WS- QTY- RECEI VED
REFERENCE WS- NO- OF- SALES PI C 72779

01 TYPE IS CONTROL FOOTI NG W5- LOCATI ON- CODE.
MOCKUP LI NES 15 THRU 21
SUM WE- QTY- | N- STOCK
SUM W&- QTY- | SSUED
SUM W&- QTY- RECEI VED
SUM W5- NO- OF- SALES

01 TYPE IS CONTROL FOOTI NG FI NAL.
MOCKUP LI NES 22 THRU 30
SUM WE- QTY- | N- STOCK
SUM W&- QTY- | SSUED
SUM W&- QTY- RECEI VED
SUM W5- NO- OF- SALES

01 TYPE IS PAGE FOOTI NG
MOCKUP LI NE 31
SOURCE PAGE- COUNTER

01 TYPE IS REPORT FOOTI NG LI NE PLUS 2.
MOCKUP LI NES 32 THRU 33

NTRY

OPEN | NPUT | NPUT- FI LE
... OQUTPUT REPORT- QUTPUT- FI LE

User’s Guide

Sample Program

ACCEPT WS- DATE- HOLD FROM DATE
MOVE W6- DATE- YY- X TO W6- DATE- YY
MOVE W5- DATE- M+ X TO WS- DATE- MM
MOVE W5- DATE- DD- X TO Ws- DATE- DD
I NI TI ATE STOCK- REPORT
REPEAT
READ | NPUT- FI LE | NTO WS- PART- STOCK- REC
UNTI L AT END ON | NPUT-FI LE
GENERATE DETAI L- LI NE
TERM NATE STOCK- REPORT
CLCSE | NPUT- FI LE
REPORT- QUTPUT- FI LE

R R S ko o O R BO'rTO\/l O: DATA Rk S R I R R

Generated source

% &AP- GEN- VER = 3000

% &AP-PGMD = " STOCK1"

% &AP- GEN- DC- TARGET = " MWS"
% &AP- TP- ENTRY- KYWD- SEEN = 1
% &AP- FI LE- CONTROL- SEEN = 1

| DENTI FI CATI ON DI VI SI ON.

PROGRAM | D.
AUTHOR.
DATE-WRI TTEN.
DATE- COVPI LED.

ENVI RONMVENT DI VI SI ON.
CONFI GURATI ON SECTI ON.
SOURCE- COVPUTER.
OBJECT- COVPUTER.

I NPUT- QUTPUT SECTI ON.
FI LE- CONTROL.

STOCK1.

AP- SYSTEM GENERATED.
910125.

&COWPI LETI ME.

&SYSTEM
&SYSTEM

SELECT | NPUT- FI LE ASSI GN TO UT-S-FI LEIN.
SELECT REPORT- QUTPUT-FI LE ASSI GN TO UT- S- REPTQUT.

DATA DI VI SI ON.

FI LE SECTI ON.

FD I NPUT-FI LE

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS O CHARACTERS.

01 PART- STOCK- REC

PI C X(80).

User’s Guide

281

282 Chapter 11 Create Reports with Report Writer

FD REPORT- OUTPUT-FI LE
LABEL RECORDS ARE STANDARD
REPCORT |'S STOCK- REPORT.

WORKI NG- STORAGE SECTI ON.
01 WS- PART- STOCK- REC.

05 WS- LOCATI ON- CODE PI C X(12)

05 W5- LAST- COUNT- DATE.
10 WS- LAST- COUNT- MONTH PI C 99
10 WS- LAST-COUNT-DAY PIC 99
10 WS- LAST- COUNT- YEAR PIC 99

05 WS- QTY- | N- STOCK PI C 9(6)
05 WS- QTY- | SSUED PI C 9(6)
05 WS- QTY- RECEI VED PI C 9(6)
05 WS- NO- OF- SALES Pl C 9(4)
05 FILLER Pl C X(40)
01 W& DATE.
05 WS- DATE- MM PIC 9(2).
05 WS- DATE- DD PIC 9(2).
05 WS- DATE- YY PIC 9(2).
01 W8 DATE- HOLD
05 WS- DATE- YY- X PIC 9(2).
05 WS- DATE- MV X PIC 9(2).
05 WS- DATE- DD- X Pl C 9(2)

REPORT SECTI ON.
RED STOCK- REPORT

CONTRCLS ARE FI NAL, WS- LOCATI ON- CODE

PAGE LIMT IS 50
FI RST DETAIL 10
LAST DETAIL 40
FOOTI NG 47.

VALUE

VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE
VALUE

WONDERFUL W DGETS | NCORPCRATED

STOCK REPORT
XXXXXX XXX
M D- ATLANTI C

STOCK REPORT
XXXXXX XXX

LOCATI ON LAST COUNT QUANTITY I'N

DATE STOCK

XHXXXAXXXXKXX 99/ 99/ 99 777,779

User’s Guide

%
>
>
0

O00000O0

%
>
»
4

QUANTI TY
| SSUED

777,779

QUANTI TY
RECE| VED

277,779

Sample Program 283

TOTAL BY LOCATI ON: Z,7277, 779 2,277,779 7,777,779
TOTAL NUMBER OF SALES BY LOCATI ON: 777,779
TOTAL WONDERFUL W DGETS | N STOCK: Z,7277,779
TOTAL WONDERFUL W DGETS | SSUED: Z,7277,779
TOTAL WONDERFUL W DGETS RECEI VED: Z,7277,779
TOTAL WONDERFUL W DGETS SOLD: Z,7277,779
PAGE 7779

*k kk*k END C]: REPmT * kk k%

01 TYPE IS REPORT HEADI NG NEXT GROUP NEXT PAGE.
MOCKUP LINES 1 THRU 6
SQURCE W&- DATE

01 TYPE IS PAGE HEADI NG
MOCKUP LINES 7 THRU 9
SQURCE W&- DATE

01 TYPE I'S CONTROL HEADI NG Ws- LOCATI ON- CODE.
MOCKUP LI NES 10 THRU 13

01 DETAIL-LINE TYPE IS DETAI L.
MOCKUP LI NE 14

SQURCE WS- LOCATI ON- CODE GROUP | NDI CATE
SQURCE WS- LAST- COUNT- MONTH PI C 99
SQURCE W6- LAST- COUNT- DAY PI C 99
SQURCE W5- LAST- COUNT- YEAR PI C 99

SQURCE W5- QTY- | N- STOCK

SQURCE W5- QTY- | SSUED

SQURCE W&- QTY- RECEI VED

REFERENCE WS- NO- OF- SALES PIC zzz9
01 TYPE I'S CONTROL FOOTI NG Ws- LOCATI ON- CODE.
MOCKUP LI NES 15 THRU 21

SUM W&- QTY- 1 N- STOCK

SUM Ws- QTY- | SSUED

SUM Ws- QrY- RECEI VED

SUM W5- NO- OF- SALES

01 TYPE IS CONTROL FOOTI NG FI NAL.
MOCKUP LI NES 22 THRU 30

SUM W&- QTY- 1 N- STOCK

SUM Ws- QTY- | SSUED

SUM Ws- QY- RECEI VED

User’s Guide

284 Chapter 11 Create Reports with Report Writer

SUM W5- NO- OF- SALES

01 TYPE IS PAGE FOOTI NG
MOCKUP LI NE 31
SOURCE PAGE- COUNTER

01 TYPE IS REPORT FOOTI NG
MOCKUP LI NES 32 THRU 33

$TP- ENTRY
OPEN | NPUT | NPUT-FI LE
... OUTPUT REPORT- OUTPUT- FI LE
ACCEPT W5- DATE- HOLD FROM DATE
MOVE W&- DATE- YY- X TO WS- DATE- YY
MOVE W5- DATE- Mt X TO WS- DATE- W
MOVE Ws- DATE- DD- X TO W5- DATE- DD
I NI TI ATE STOCK- REPORT
REPEAT
READ | NPUT-FI LE | NTO W5- PART- STOCK- REC
UNTI L AT END ON | NPUT-FI LE
GENERATE DETAI L- LI NE
TERM NATE STOCK- REPORT
CLOSE | NPUT- FI LE
REPORT- OUTPUT- FI LE

Printed report
WONDERFUL W DGETS | NCORPORATED

STOCK REPORT
01/ 25/ 91

M D- ATLANTI C

STOCK REPORT

LOCATI ON LAST COUNT QUANTITY I'N QUANTI TY QUANTI TY
DATE STOCK | SSUED RECEI VED

ALEXANDRI A 05/01/90 111 222 333
06/ 01/ 90 111 222 333

07/01/90 111 222 333

08/ 01/ 90 111 222 333

09/01/90 111 222 333

10/ 01/ 90 111 222 333

11/01/90 111 222 333

User’s Guide

Sample Program 285

TOTAL BY LOCATI ON: 777 1,554 2,331

TOTAL NUMBER OF SALES BY LOCATI ON: 3,108
LAST COUNT QUANTITY I'N QUANTI TY QUANTI TY
LOCATI ON DATE STOCK | SSUED RECEI VED
BALTI MORE 06/ 01/ 90 11 22 33
08/ 01/ 90 11 22 33
09/01/90 11 22 33
10/ 01/ 90 11 22 33
11/01/90 11 22 33
TOTAL BY LOCATI ON: 55 110 165

TOTAL NUMBER OF SALES BY LOCATI ON: 220
PAGE 1

M D- ATLANTI C
STOCK REPORT
01/ 25/ 91

LAST COUNT QUANTITY I'N QUANTI TY QUANTI TY
LOCATI ON DATE STOCK | SSUED RECEI VED
ROCKVI LLE 05/01/90 11 22 33
06/01/90 11 22 33
07/01/90 11 22 33
08/01/90 11 22 33
09/01/90 11 22 33
10/ 01/ 90 11 22 33
11/01/90 11 22 33
TOTAL BY LOCATI ON: 77 154 231

TOTAL NUMBER OF SALES BY LOCATI ON: 308
LAST COUNT QUANTITY I'N QUANTI TY QUANTI TY
LOCATI ON DATE STOCK | SSUED RECEI VED
WASHI NGTON 06/ 01/ 90 111,111 222,222 333, 333
07/01/90 111,111 222,222 333, 333
08/01/90 111,111 222,222 333, 333
09/01/90 111,111 222,222 333, 333
10/ 01/ 90 111,111 222,222 333, 333
11/01/90 111,111 222,222 333, 333

User’s Guide

286 Chapter 11 Create Reports with Report Writer

TOTAL BY LOCATI ON: 666, 666 1,333,332 1,999,998
TOTAL NUMBER OF SALES BY LOCATI ON: 26, 664
PAGE 2
M D- ATLANTI C
STOCK REPORT
01/ 25/ 91
TOTAL WONDERFUL W DGETS | N STOCK: 667, 575
TOTAL WONDERFUL W DGETS | SSUED: 1, 335, 150
TOTAL WONDERFUL W DGETS RECEI VED: 2,002,725
TOTAL WONDERFUL W DGETS SOLD: 30, 300

PAGE 3
*k k k% END C]: REPmT * kk k%

User’s Guide

287

12 Using the APS/ENDEVOR
Interface

This chapter contains the following sections:
® APS/ENDEVOR Overview
® Using APSIENDEVOR

APS/ENDEVOR Overview

Version control
for APS
applications

APS/ENDEVOR
tasks

The APS/ENDEVOR Interface is an interface between Micro Focus’s APS
for z/OS and LEGENT Corporation’s ENDEVOR/MVS software
management product. The interface lets you manage your APS
application components--called elements in ENDEVOR--using ENDEVOR
from within APS for z/OS.

Specifically, you can do the following:

® Store and retrieve multiple revisions of an APS application
component.

APS/ENDEVOR stores all revisions of an application component in a
single controlled member in the ENDEVOR/MVS library. You can
retrieve any revision at any time.

® Manage all components of an application as one group.

For an application component that references all components of an
application, APS/ENDEVOR manages all its referenced components
as a group. You can add, update or sign in, and retrieve and
signout all components of an application with one request.

® Resolve access conflicts.

When you retrieve a revision to modify it, you can sign it out to
prevent other developers from simultaneously changing that
revision.

User’s Guide

288 Chapter 12 Using the APS/ENDEVOR Interface

Supported actions
and displays

Checkin

User’s Guide

® Display the history of source code changes.

You can display just the statements that differ between a specific
revision and the preceding one, instead of comparing revisions line
by line. Alternatively, you can display all the inserted and deleted
statements in all revisions of a component.

® Display component information.

You can display log information on all revisions of a component,
including creators and creation dates, the origin of the base
revision, and when it was last generated and retrieved, and by
whom.

The APS/ENDEVOR Interface lets you use the basic ENDEVOR/MVS action
and display functions that you are likely to need. For those functions
not supported by the interface, you can invoke ENDEVOR/MVS from
within APS. This document discusses only those ENDEVOR/MVS
functions relevant to understanding and using the interface.

The APS/ENDEVOR Interface provides options that correspond to
ENDEVOR/MVS actions and displays, as follows. Each option works in
APS just as it works in ENDEVOR.

Interface Option ENDEVOR/MVS Function
Checkin Add/Update or Signin

Checkout Retrieve and, by default, Signout
Summary Report Summary Element Display
Master Report Master Element Display

Browse Report Browse Element Display

View Differences Report Changes Element Display

History Report History Element Display

The check in action adds to or updates the ENDEVOR library with an APS
component from an APS Project.Group. Alternatively, you can sign in a
component at checkin, without adding to or updating the library.

The first time you check in a component from your APS Project.Group,
APS/ENDEVOR creates a controlled member that stores the component,
and all subsequent revisions of that component, in the ENDEVOR/MVS
library. The first checked in component is the first revision. It has the
version number number 01 and the level number 00, expressed as 01.00.

Checkout

Reports

APS/ENDEVOR Overview

A controlled member contains the following information:
® The complete text of the latest revision of the component.

® The modified text, or set of deltas, from all prior revisions. When a
user checks out any prior revision, ENDEVOR reconstructs it from the
latest revision and the deltas of the prior revisions.

® Log information on all revisions that you can display in reports.

APS submits a batch job to check in the Program (PG) and Screen (SC)
component types; for all other component types, APS executes a job
immediately.

The checkout function retrieves and, by default, signs out a revision
from a controlled member of the ENDEVOR library to an APS
Project.Group so that you can modify it.

By signing out a revision, you prevent anyone else from modifying it.
Conversely, you cannot checkout a revision that has been checked out
by some one else. You can, however, override the signout, assuming you
have authority to do so. Otherwise, the signout is released when the
component is moved or transferred to another Stage.

APS/ENDEVOR provides reports that help you monitor the changes
made to APS components in the ENDEVOR library.

The View Differences report lets you display the source statements that
differ between a specific component revision and the preceding one.

The four View Print reports let you display log and source change
information on one or all revisions of a component.

Report Description

Browse ® Log information on all revisions, including creators;
creation dates; number of statements; CCIDs;
comments; when the component was last
generated and retrieved, and by whom.

® All statements in the specified revision, marked
with the level number at which they were first
inserted.

User’s Guide

289

290 Chapter 12 Using the APS/ENDEVOR Interface

Report Description

History ® Log information on all revisions, including creators;
creation dates; number of statements; CCIDs;
comments; when the component was last
generated and retrieved, and by whom.

® Allinserted and deleted statements that ever
existed in all revisions of the component, marked
with the level number at which they were inserted
or deleted.

Master ® Information on a component, including its
processor group; the last action performed against
it; its current signout status; when it was last
modified and generated, and by whom; the origin
of its base revision; who moved or transferred the
component from a Stage, and when.

Summary ® Log information on all revisions, including creators;
creation dates; number of statements; number of
inserted and deleted statements.

For information on ENDEVOR/MVS, see the ENDEVOR/MVS User’s Guide
and the ENDEVOR/MVS Administrator’s Guide.

Using APS/ENDEVOR

This section provides instructions for accessing the interface, specifying
the APS location for checkins and checkouts, executing checkins and
checkouts, and running reports.

Accessing APS/ENDEVOR Options

1 To access the APS/ENDEVOR Interface, select option 5, Version
Control System, from the APS Main Menu. The APS/ENDEVOR
Version Control Menu displays.

User’s Guide

2

Using APS/ENDEVOR

Select one of the five APS/ENDEVOR options.

Option

Project Group
Environment

Checkin

Checkout

View Differences

View Print

Function

Specify the APS Project and Group for
checking components in and out.

Add to or update the ENDEVOR library with
an APS component from an APS
Project.Group, or signin a component without
adding to or updating the library.

Retrieve and, by default, sign out a revision
from a controlled member of the ENDEVOR
library to an APS Project.Group so that you
can modify it.

Display a report showing the changed source
statements that differ between a specific
component revision and the preceding one.

Display reports showing log and source
change information on one or all revisions of
a component.

If you need to use an ENDEVOR/MVS function not presented on the
APS/ENDEVOR Menu, you can access ENDEVOR/MVS from any APS
screen by entering ndvr in the Command field on any APS screen.

Specifying a Project and Group

1

From the APS/ENDEVOR Version Control Menu, select option 0,
Project Group Environment. Alternatively, enter proj in the
Command field on any APS screen.

Specify the Project and Group you want to check components in
from, and check components out to. You can change the value at

any time.

Checking a Component In

1

From the APS/ENDEVOR Version Control Menu, select option 1,
Checkin. Alternatively, enter ci in the Command field on any APS

screen.

User’s Guide

291

292 Chapter 12 Using the APS/ENDEVOR Interface

User’s Guide

2 Complete the Checkin screen fields as follows:

Screen Field
Entity Type

Member

System

Subsystem

Comment
CaD

Bypass Gen
Processor

Delete Input Source

Description

Entity Type of the APS component to check
in. Valid values:

ap Application Painter component in
APSAPPL plus its related component
in APRAPPL

cn Scenario Painter component in
APSCNIO

ds Data Structure Painter componentin
APSDATA

oX Online Express component in
APSEXPS

pg Program Painter component in
APSPROG plus its related component
in APRPROG

rp Report Mock-up Painter component
in APSREPT

sC Screen Painter component in
APSSCRN

For other APS component types in your
Project.Group, specify a data set name, such
as USERMACS and DDISYMB.

Component name to check in, or leave the
Member field blank to select from a member
list.

ENDEVOR System name, if it differs from the
default System name for your current APS
Project.Group.

ENDEVOR Subsystem name, if it differs from
the default Subsystem name for your current
APS Project.Group.

Text comment for the checkin.
ENDEVOR CCID for the checkin.

Default: No. Specify yes to bypass the
associated ENDEVOR Generate Processor.

Default: No. Specify yes to delete the
component from the APS Project.Group.

Screen Field
Processor Group
Override Signout

Signin Only

Stage
Component Parts

Using APS/ENDEVOR

Description
Name of the ENDEVOR Processor Group.

Default: No. Specify yes to override an
existing signout. You must have authority to
do so.

Default: No. Specify yes to Signin only,
releasing a previous signout of the
component issued with your user ID; the Add
or Update action is not executed.

ENDEVOR Stage number for signin.

To use when checking in AP and PG
component type components. Valid values:

none Default. Process only the component
specified in the Member field.

all Process the component specified in
the Member field and all its
associated component parts, or
components.

list Display the Component Types
Selection screen, to select the
associated component types for
processing.

APS submits a batch job to perform the
checkin when some or all component parts
are checked in with the component specified
in the Member field.

3 Press Enter to execute the checkin.

4 Check the ENDEVOR Action Summary Report to ensure that the
checkin job succeeded.

Checking a Revision Out

1 From the APS/ENDEVOR Version Control Menu, select option 2,
Checkout. Alternatively, enter co in the Command field on any APS

screen.

User’s Guide

293

294 Chapter 12 Using the APS/ENDEVOR Interface

2 Complete the Checkout screen fields as follows.

Screen Field Description

Entity Type Component Type of the component to
checkout. Valid values same as for Checkin.

Member Member name to checkout, or leave the
Member field blank to select from a member
list.

System ENDEVOR System name, if it differs from the

default System name for your current APS
Project.Group.

Subsystem ENDEVOR Subsystem name, if it differs from
the default Subsystem name for your current
APS Project.Group.

Stage ENDEVOR Stage number of the member to
checkout.
Version Defaults to the current revision. You can

optionally override this value with another
version number.

Level Defaults to the current level. You can
optionally override this value with another
level number.

Comment Text comment for the checkout.

CCID ENDEVOR CCID to associate with the
checkout.

No Signout Specify yes to checkout and browse the
member without signing it out to your user
ID.

Replace Member Specify yes to overlay an existing member in
the APS Project.Group.

Override Signout Specify yes to override an existing Signout by
another user. You must have authority to do
so.

Component Parts For use when checking out AP and PG

component type components. Valid values
same as for checkin.

3 Press Enter to execute the checkout.

User’s Guide

Using APS/ENDEVOR

4 Check the ENDEVOR Action Summary Report to ensure that the

checkout job has succeeded.

Running the View Differences Report

1

On the APS/ENDEVOR Version Control Menu, select option 3, View
Differences. Alternatively, enter df in the Command field on any
APS screen.

Specify the name, location, version, and level of a controlled
member revision you want to report on. The report defaults to the
current version and level; you can override with any version and
level.

Running the View Print Reports

1

On the APS/ENDEVOR Version Control Menu, select option 4, View
Print. Alternatively, enter vp in the Command field on any APS
screen.

Run any of the reports by specifying the report, name, and location
of a controlled member you want to report on. For reports on a
specific revision, specify the version and level of the revision to
report on. The report defaults to the current version and level; you
can override with any version and level.

User’s Guide

295

296 Chapter 12 Using the APS/ENDEVOR Interface

User’s Guide

IndeXx

Symbols

&GEN-DB-REC-01 NAMES flag 27
&VS-GEN-01-USING-RECNAMES flag 36

Numerics

01 keyword 218, 237, 252, 261
use in Report Writer 252, 265

A

accumulators, Report Writer
initialize 271
page 271
sum 269, 271, 273, 274
Add function, Online Express 83
specifying 88
adding database records, function in Online
Express 83
specifying 88
Alternate Functions screen
for character programs 90
ampersands
in text fields 59
Application Painter 13
accessing 17
accessing other painters from 22
purpose of 15
applications
application definition, copying 22

297

application definition, creating 17
application definition, modifying 22
components of 15
components of, copying 22
components of, defining using APS 22
components of, deleting 22
executing 188
generating 171
APS
about 9, 13
tool set for 13
APS/ENDEVOR Interface 14
APSREPT file 261
arrays, Report Writer
see iterative expressions
assembler macros, screen generation param-
eter 75
associated program, ISPF prototyping gener-
ation option 77
attributes, field 41
assigning to a specific field 52
assigning to all fields on screen 53
blinking 56, 77
color 55, 76
cursor position, initializing 90
Data Element Facility fields, modifying
53
Data Element Facility fields, viewing 49
highlighting 56
intensity 54, 76
light pen detection 55
list of 54
modified data tag 55
modifying 53
modifying at run time 56, 76
numeric keyboard locking 55

User’s Guide

298

protected 54, 77
reverse video 56, 77
underlining 56, 77
unprotected 54, 77
AVG function, SQL 123

Backward function, Online Express 83
specifying 88
batch
specifying as target 18
batch programs
see programs, batch
see programs, batch, Program Painter
Bind, SQL options 181
BLANK WHEN ZERO Report Writer clause 267
blocks of records
see repeated record blocks
BMS mapsets
first line of, setting 77
generating 171
generating, multiple-map mapsets 188
names, overriding 77
business name 201
bypass field edits 64

C

CA keyword 222
Call function, Online Express 83
specifying 90
calling subroutines, function in Online Ex-
press 83
specifying 90
Caps option, Screen Painter 47, 58
CHANGE INDICATE Report Writer clause 267
checking in files
to ENDEVOR 288, 291

User’s Guide

checking out files
from ENDEVOR 289, 293
CICs
BMS mapsets, generating 171
BMS mapsets, multiple-map mapsets,
generating 188
BMS mapsets, names, overriding 77
modified data tag, setting 55
screen generation parameters 77
specifying as target 18
transaction ID, specifying 77
Clear function, Online Express 83
specifying 88
specifying low-values 94
Clear key, assigning functions to 93
clearing screen, function in Online Express 83
specifying 88
specifying low-values 94
COBOL
coding in Program Painter 213, 229
coding in Specification Painter 98, 108
COBOL/2
generator option 176
color, screen fields 55, 76
Column Selection screen 120
Column Selection Update screen 121
Commarea
defining in Program Painter 221
Commarea, defining 166
comments
control points, Online Express 104
in program code 225, 242
comments, writing
in Scenario Painter 66
compiling
COBOL compile step 171
connecting records, IDMS 146, 151
control breaks for reports 254, 263, 265, 271,
272
CONTROL FOOTING (CF) keyword 252, 265
CONTROL HEADING (CH) keyword 252, 265
control points
database call 157
standard 103

CONTROL Report Writer clause 264, 272
conversion values, field edits 62
CONVERT command, Program Painter 227,
244
copying
application components 58
application definitions 22
field edits 63
copylibs/copybooks
importing, IMS 26
importing, VSAM 31, 35
including in programs 219, 221, 238, 239
Correlation Names screen 130
COUNT function, SQL 123
counters, Report Writer
line 271
Create Like function 22
currency, establishing 138, 148
cursor feedback, IMS DC generation option
78
cursor, positioning on screen fields 90
cursors, SQL table
declarations 220, 238
Customization Facility 14
customizing
Online Express programs, custom func-
tions, character programs 94
Online Express programs, database call
error processing 103, 157, 161
Online Express programs, functions, pre-
defined 103, 152

D

data communication calls 224
Data Division
defining in Program Painter 214, 230, 234
invoking macros in 226, 242
Data Element Facility 14
field attributes, modifying 53
field attributes, viewing 49
global and local screen fields 43

299

selecting fields from, for character
screens 48
specifying for Project and Group 174
Data Element Info screen 49
Data Element List screen 48
data simulation in Scenario Painter 45, 68
Data Structure Painter 13
including data structuresin program 220,
238
data structures
creating in program 218, 237
including in programs 218, 220, 236, 238
naming conventions 20
program locations for 20
specifying in application definition 20
Database Access Summary screen 119, 137,
141, 146
database calls
Program Painter 224
database calls, Online Express
actions and functions 113
customizing 103, 152
error handling 103, 157, 161
IDMS 146
IDMS, connecting and disconnecting
records 146, 151
IDMS, looping 147, 151, 153
IDMS, member records, obtaining 148
IDMS, qualifying 149
IMS 136
IMS, child records, obtaining 138
IMS, looping 138, 141, 153
IMS, qualifying 138
looping 114
looping 89, nested loops 153
SQL 118
SQL, column list, updating 121
SQL, Exists clause 126
SQL, functions 123
SQL, generated calls, previewing 129
SQL, Group By clause 123
SQL, Having clause 127
SQL, host variables, overriding 122
SQL, index columns 127

User’s Guide

300

SQL, Join calls 130
SQL, literals, obtaining 123
SQL, looping 120, 153
SQL, qualifying 123
SQL, Subselect clause 124
SQL, Union calls 132
VSAM 141
VSAM, looping 142, 145, 153
VSAM, qualifying 143
database functions, Online Express 83
customizing 103, 152
execution methods, specifying 92
specifying 87
database importers 13
IDMS 37
IMS 26
SQL DB 31
VSAM 35
Database Qualification screen 138, 143, 149
Database Record Selection 119, 137, 142, 147
DATA-NAME Report Writer clause 269
date field edits
accessing 62
DB Target
using multiple 25
DB target
specifying 18
DB2
cursor declarations, defining in program
220, 238
specifying as target 18
table declarations, defining in program
220, 238
DBDs
importing 26
DC target, specifying 18
DDI statements
IMS, for logical relationships 28
IMS, for secondary indexes 28
DDISYMB, generating
IMS 29
VSAM 35
DDS
specifying as target 18

User’s Guide

debugging programs
SCBTRACE option 177
DECL keyword 242
Declarative Section
USE BEFORE REPORTING 255
Declaratives Section
defining in Program Painter 241
declaratives, Report Writer 255
Delete function, Online Express 83
specifying 88
deleting
application components 22
database records, function in Online Ex-
press 83
database records, function in Online Ex-
press 65, for character programs
88
field edits 63
DETAIL (DE) keyword 252, 265
detail lines, Report Writer 252, 253, 264, 269
detail reports, Report Writer 271
device type, IMS DC generation option 78
DIF-DOF name, IMS DC generation option 78
disconnecting records, IDMS 146, 151
Documentation Facility 13
DPAR keyword 241
DS keyword 220, 238
DSCA, IMS DC generation option 79

E

Edit Selection screen, field edits 60
editing options
Screen Painter 47, 58
edits, field
accessing 60
bypassing 64
conversion values for 62
copying 63
deleting 63
error handling 63
overview of 42

user-defined, creating 62
value ranges for 62
edits, fields
date fields 62
summary of current edits 60
time fields 62
ENDEVOR, APS Interface 287
checking in files 288, 291
checking out files 289, 293
reporting on files 289, 295
Environment Division
defining in Program Painter 213, 218,
230, 234
invoking macros in 226, 242
error handling
APS Precompiler 172
database calls, Online Express, customiz-
ing 157, 161
field edits 63
field edits, bypassing 64
SCBTRACE option 177
executing applications
APS facilities for 188
execution facilities, APS 188
Exists clause, SQL 126
Exit function, Online Express 83
specifying 88
exiting programs, function in Online Express
83
specifying 88
Express Parms screen 94, 104
extended attributes 54
modifying at run time 76
modifying at run time, ISPF prototyping
76

F

FD keyword 234

use in Report Writer 252, 261
Field Attributes screen 52
Field Mapping screen 101

301

field mapping, Online Express 101
Field Name Display option, Screen Painter 48
Field Selection screen, field edits 60
fields
CICS, TP-USERAREA 221
CICS, TP-USER-LEN 221
DDS, TP-USERAREA 221
DDS, TP-USER-LEN 221
IMS DC, TP-USERAREA 221
IMS DC, TP-USER-LEN 221
ISPF Dialog, TP-USERAREA 221
ISPF Dialog, TP-USER-LEN 221
Report Writer, internal sum accumulators
269, 273, 274
Report Writer, LINE-COUNTER 256
Report Writer, PAGE-COUNTER 256
fields, screen
see screen fields
File Section
defining in Program Painter 230
file description keyword 234
invoking macros in 226, 242
Report Writer 252, 261
sort file description keyword 236
File-Control
defining in Program Painter 234
FINAL keyword 264
flags
error handling, Online Express status 161
SAGE-TRACE-FLAG 177
footers, Report Writer 252, 264
format, character
of character screens 56
Forward function, Online Express 83, 88
function codes, Online Express program
renaming default codes 92
specifying 89, 91
function fields, Online Express program 86
defining 88
functions, Online Express program
custom, defining 94
customizing, functions, predefined 103,
152
database, predefined 83

User’s Guide

302

database, predefined, customizing 103,
152

database, predefined, error processing
161

database, predefined, execution meth-
ods, specifying 92

database, predefined, specifying 87

functions, predefined, error processing
103, 157

functions, predefined, list of 82

teleprocessing, predefined, customizing
103

teleprocessing, predefined, execution
methods, specifying 92

teleprocessing, predefined, specifying 87

G

GEN-DB-REC-01-NAMES flag 36

GENERATE Report Writer statement 254, 271

generating applications 171
IDMS options 184
options, APS generator options 174
options, APS precompiler options 176
options, for Online Express 94
options, Online Express 104
options, resetting to default values 186
previewing APS-generated source 227,

244

generating programs 171

generating screens 171
files for generated source 172
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-

typing 77

Generator Options screen 174

generators 13

global
application components 16

User’s Guide

application components, specifying in
application definition 16
field edit messages 63
screen fields 43
screen fields, attributes, modifying 53
screen fields,selecting from Data Element
Facility 48
stubs, as custom program functions 95
stubs, at database call control points 158,
160
stubs, at standard control points 103
stubs, naming conventions 21
stubs, Program Painter, including in pro-
grams 224, 240
stubs, rules for coding 108
stubs, specifying in application definition
21
Group By clause, SQL 123
GROUP INDICATE Report Writer clause 267
GSAM
PSBs and DBDs, importing 26

H

Having clause, SQL 127
headers, Report Writer 252, 264
Help source file

creating 198
highlighting screen fields 56

I/0 fields
creating 48
mapping to databases 101
Identification Division
defining in Program Painter 213, 218,
230, 233

IDMS
connecting and disconnecting records
146, 151
database calls 146
databases, importing 37
keys, qualifying on 149, 162
loop calls 147, 151
member records, obtaining 148
options 184
specifying as target 18
IDMS DB
specifying as target 18
IMS Database Importer screen 29
IMS DB
copylibs, importing 26
database calls 136
databases, importing 26
DBDs, importing 26
loop calls 138, 141
PSBs, importing 26
specifying as target 18
IMS DC
cursor feedback, specifying 78
device type, specifying 78
DIF-DOF name, specifying 78
DSCA, specifying 79
lines per page, specifying for printing 79
MFS mapsets, generating 171
MID, default values, specifying 79
MID, name, specifying 78
MOD, fill character, specifying 79
MOD, name, specifying 79
operator logical paging, specifying 78
screen generation parameters 78
specifying as target 18
IMS DC screens
see screen fields / attributes, field / edits,
field
including in programs
copylibs/copybooks 219, 221, 238, 239
data structures 218, 220, 236, 238
global stubs 224, 240
index columns, SQL
ordering in call 127

303

qualifying on 120
initialize reports, Report Writer 271
INITIATE Report Writer statement 254, 271
Input-Output Section
defining in Program Painter 234
invoking macros in 242
keyword 252, 261
Report Writer 252, 261
intensity, screen fields 54, 76
10 keyword 234
use in Report Writer 252, 261
ISPF Dialog
specifying as target 18
ISPF Dialog screens
see screen fields / attributes, field / edits,
field
ISPF prototyping
see prototyping under ISPF
iterative expressions, Report Writer 274

J

job control cards, creating 184
Join calls, SQL 130
JUSTIFIED RIGHT Report Writer clause 267

K

KANJI format
for character screens, ruled lines 56
for character screens, specifying for fields

56

Keys option, Screen Painter 47, 58

keys, record
IDMS, group-level, qualifying on 162
IDMS, qualifying on 149
VSAM, group-level, qualifying on 162
VSAM, qualifying on 143

User’s Guide

304

L

layouts, report
see report mock-ups
length
character screen fields, changing 54, 59
light pen detection 55
line counter, Report Writer 256, 271
LINE Report Writer clause 265
LINE-COUNTER Report Writer field 256
Linkage Section
defining in Program Painter 214, 220,
230, 239
invoking macros in 226, 242
literals, Report Writer 254
LK keyword 220, 239
Loc(ation) field, Application Painter 21
local
screen fields 39, 43
stubs, as custom program functions 95
stubs, at database call control points 158,
160
stubs, at standard control points 103
stubs, rules for coding 107
locations, program
specifying for Customization Facility
source 226, 242
looping, Online Express 114
IDMS 147, 151, 153
IMS 138, 141, 153
nested loops 153
nesting levels 155
SQL 120, 153
VSAM 142, 145, 153

M

macros, user-defined
as custom program functions 95
at database call control points 158, 160
at standard control points 109

User’s Guide

invoking in Program Painter program
226, 242
naming conventions 20
program locations for 21
specifying in application definition 20
mapping, fields
see field mapping, Online Express
MAX function, SQL 123
message switching, function in Online Ex-
press 83
specifying 90
MFS mapsets
generating 171
trancode literal values, specifying 79
MID
default values, specifying 79
name, specifying 78
MIN function, SQL 123
MOCK keyword 252, 265
MOCKUP Report Writer statement 266
mock-ups
see report mock-ups
MOD
fill character, specifying 79
modifiable extended attributes
prototyping under ISPF 76
modified data tag, setting 55
MSG-SW function, Online Express 83
specifying 90

N

Next function, Online Express 83
specifying 88

NTRY keyword 213, 223, 239

Nulls option, Screen Painter 47, 58

numeric keyboard locking 55

O

Online Express 13
Commarea, defining 166
control points, database call 157
control points, standard 103
customizing programs, custom functions,
character programs 94
customizing programs, database call er-
ror processing 103, 157, 161
customizing programs, functions, pre-
defined 103, 152
database calls, customizing 103, 152
database calls, defining 113
database functions 83
database functions, execution methods,
specifying 92
database functions, specifying 87
function codes, renaming 92
function codes, specifying 89
function fields, defining 88
generating applications, programs,
screens 171
menu 88
processing logic, defining 81
savekey storage, defining 166
screen fields, mapping to databases 101
stubs, global 95
stubs, local 95
teleprocessing functions 83
teleprocessing functions, execution
methods, specifying 92
teleprocessing functions, specifying 87
Online Express menu 88
online programs
see programs, online
operator logical paging, specifying 78
Order By Columns screen 127

P

PA keys, assigning functions to 93
page counter, Report Writer 256, 271
PAGE FOOTING (PF) keyword 252, 265
page headers and footers
see headers, Report Writer and footers,
Report Writer
PAGE HEADING (PH) keyword 252, 265
PAGE LIMIT Report Writer clause 264
PAGE-COUNTER Report Writer field 256
Painter Menu
Create Like function 58
PANVALET keyword 220, 239
PARA keyword 223, 240
paragraphs
at control points 110
rules for coding 110
paragraphs, Program Painter
writing in program 223, 240
Parm screen, field edits 63
PF Key Functions screen 92
PF keys
assigning program functions to 92
PIC clause
report mock-ups 260
Report Writer 267, 269, 273, 274
Precompiler Options screen 176
precompiler, APS
options for 176
processes performed 171
PROC keyword 239
Procedure Division
defining in Program Painter 214, 223,
230, 239
PROCEDURE DIVISION USING statement
239
Report Writer 254, 255
Program Definition screen 88
program locations
specifying for Customization Facility
source 226, 242

User’s Guide

305

Program Painter 13
batch programs, creating 229
Commarea, defining 221
data communication calls, writing 224
database calls, writing 224, 240
online programs, creating 213
online programs, source code to use 215
programs, batch
see report mock-ups
creating 229
generation option, Report Writer 178
naming conventions 19
sample program 244
specifying in application definition 19
programs, online
executing 188
generating 171
message switch function, Online Express
83
message switch function, Online Express,
specifying 90
naming conventions 19
specifying in application definition 19
transfer function, Online Express 83
transfer function, Online Express, specify-
ing 90
Project and Group
specifying in application 173
Project Group Environment screen 173
protected fields
character screens 54, 77
Prototype Execution Menu 189
Prototype Execution screen 189
prototype, screen flow
see scenario prototype
prototyping under ISPF
ampersands in text fields 59
associated programs, specifying 77
field names 54
modifiable extended attributes 76
screen generation parameters 77
specifying as target 18

User’s Guide

prototyping under ISPF screens
see screen fields / attributes, field / edits,
field
PSBs
importing 26
naming conventions 20
specifying in application definition 20

Q

Query function, Online Express 83
specifying 88
guerying databases, function in Online Ex-
press 83
specifying 88

R

REC keyword 219, 237
record
length for reports 262
record blocks
see repeated record blocks
RED keyword 252, 263
REFERENCE Report Writer clause 253, 269,
274
Refresh function, Online Express 83, 88
Repeated Block Menu 71
Repeated Block pop-up screen 51
repeated record blocks
creating 51
functions and function fields for 86
functions and function fields, specifying
88
modifying 71
scrolling, functions in Online Express 83,
88
report accumulators
see accumulators, Report Writer

report control break
see control breaks for reports
report description entry
see RED keyword
REPORT FOOTING (RF) keyword 252, 265
REPORT HEADING (RH) keyword 252, 265
report mock-ups
accessing the painter 259
APSREPT file 261
column limit 260
data fields 259, 260
description of 251
identify in Report Section 265
line limit 260
literal fields 259
mapping data items 253, 261, 267, 273,
277
mapping lines 261, 266, 277
naming conventions 20, 260
painting 259
PIC string 260
record size 262
specifying in application definition 20
Report Painter
see report mock-ups
Report Section
invoking macros in 242
keywords 252
Report Writer 252
Report Writer
see mock-up report, mock-ups
01 keyword 261
accumulators 271
accumulators, initialize 271
accumulators, page 271
accumulators, sum 269, 271, 273, 274
begin processing 254
code your own WRITE statement 272
control breaks 254, 263, 265, 271, 272
counters, line 271
declaratives 255
defining the report 263
detail lines 252, 253, 264
detail reports 271

307

end processing 256, 271

FD keyword 261

File Section 252, 261

footers 252, 264

headers 252, 264

identify mock-up 265

initialize accumulators 253, 271

Input-Output Section 252, 261

iterative expressions 274

line limits 264

literal values 254, 259

mapping data items 253, 261, 267, 273,
274, 277

mapping report lines 261, 266, 277

MOCK keyword 252, 265

multiple detail lines 269

non-printing fields 253, 269, 274

option for large programs 177

page limits 264

Procedure Division statements 254, 255

processing each report 254

record length 262, 272

RED keyword 252, 263

report group types 252, 265, 272

Report Section 252, 263

sample report programs 279

summary reports 271

summing data items 253, 269, 274

USE BEFORE REPORTING 255

Working-Storage entries 263, 272

reports, ENDEVOR 289
RESET Report Writer clause 269
RETITLE command

Scenario Painter 66

row functions

see repeated record blocks

ruled line attribute, KANJI format 56
ruler, displaying in Screen Painter 59
RUN command

Scenario Painter 67

User’s Guide

308

S

Savekey Definition screen 168
savekey storage, defining 166
Scenario Painter 13, 44, 65
see scenario prototype
scenario prototype 44
accessing Scenario Painter 65
creating and running 65
data, passing 45, 68
screen sequence defining 66
screen sequence, modifying 69
screen titles for, assigning 52
Screen Editor 13
screen fields
copying 72
creating 47
deleting 71
function fields 86
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-
typing 77
global 43
global attributes, modifying 53
global attributes, viewing 49
global, selecting from Data Element Fa-
cility 48
I/0 fields, creating 48
length, changing 48, 54, 59
limit for screen 59
local 39, 43
mapping to databases 101
MFS, trancodes, literal values 79
moving 72
naming conventions 54
repeated record blocks, copying 72
repeated record blocks, creating 51
repeated record blocks, deleting 71
repeated record blocks, modifying 71, 73
repeated record blocks, moving 72

User’s Guide

system message fields 57
text fields, creating 48
value, initial 55
screen fields attributes, field
see Data Element Facility / edits, field
screen flow prototype
see scenario prototype
Screen Generation Parameters screen 74
Screen Painter 39
accessing 47
editing options 47, 58
user profile 47, 58
Screen Painter screens
see screen fields
screen, APS
Express Parms 104
screens
copying 58
data, passing in scenario prototype 45, 68
editing options, Screen Painter 58
generating 171
generating, files for generated source
172
generation parameters 74
generation parameters, for all targets 75
generation parameters, for CICS 77
generation parameters, for IMS 78
generation parameters, for ISPF proto-
typing 77
layout, designing 39
layout, modifying 71
naming conventions 19
saving 58
scenario of sequence 44
scenario of sequence, creating and run-
ning 65
sending function, Online Express 83
sending function, Online Express, specify-
ing 90
size, specifying 19
specifying in application definition 19
titles, assigning for Scenario Painter 52
screens, APS
Alternate Functions 90

Bind Options 181

Checkin, ENDEVOR Interface 291

Checkout, ENDEVOR Interface 293

Column Selection 120

Column Selection Update 121

Correlation Names 130

Data Element Info 49

Database Access Summary 119, 137, 141,
146

Database Qualification 138, 143, 149

Database Record Selection 119, 137, 142,
147

Edit Selection 60

ENDEVOR Version Control Menu 290

Express Parms 94

Field Attributes 52

Field Mapping 101

Field Selection 60

Generator Options 174

IDMS Options 184

IMS Database Importer 29

Job Control Cards 184

Online Express menu 88

Order By Columns 127

Parm 63

PF Key Definition 92

Precompiler Options 176

Program Definition 88

Project Group Environment 173

Prototype Execution 189

Prototype Execution Menu 189

Repeated Block Menu 71

Repeated Block pop-up 51

Scenario Painter 44, 65

Screen Generation Parameters 74

Special Key Definition 93

SQL Command Review 129

SQL Having Clause Specification 127, 132

SQL Qualification Specification 123

Subselect Specification 124

Union Columns Cross Reference 135

Union Summary Menu 133

View Differences, ENDEVOR Interface
295

309

VSAM File Importer 35
scrolling repeated record blocks, functions in
Online Express 83, 88
SD keyword 236
SELECT statement keyword 261
Send function, Online Express 83
specifying 90
sending screens, function in Online Express
83
specifying 90
SOURCE Report Writer clause 253, 267, 269,
274
Special Key Definition screen 93
Special-Names
defining in Program Painter 218, 234
Specification Painter 13
SPNM keyword 218, 234
sQL
Bind, options 181
cursor declarations, defining in program
220, 238
database calls, Online Express 118
Exists clause 126
functions 123
Group By clause 123
Having clause 127
index columns, ordering in call 127
index columns, qualifying on 120
Join calls 130
loop calls 120
specifying as target 18
Subselect clause 124
table declarations, defining in program
220, 238
Union calls 132
SQL Command Review screen 129
SQL DB2 objects, importing 31
SQL functions 123
SQL Having Clause Specification screen 127,
132
SQL Qualification Specification screen 123
status flags, Online Express 161
STUB keyword 224, 240

User’s Guide

310

stubs global stubs
local stubs 15
subroutines/subprograms
calling function, Online Express 83
calling function, Online Express, specify-
ing 90
subschemas
IDMS, importing 37
IMS, importing 26
naming conventions 20
specifying in application definition 20
using multiple 25
VSAM, importing 35
Subselect clause, SQL 124
Subselect Specification screen 124
sum accumulators, Report Writer 253, 269,
273,274
SUM function, SQL 123
SUM Report Writer clause 253, 269, 274
summary reports, Report Writer 271
SYBT keyword 226, 243
SYDD keyword 226, 243
SYEN keyword 226, 243
SYFD keyword 226, 243
SYIO keyword 243
SYLK keyword 226, 243
SYLT keyword 226, 243
SYM1 keyword 226, 243
SYM2 keyword 226, 243
SYRP keyword 243
SYSMSG field
creating 57, 76
system messages
creating field for 57
for character screens, creating field for
76, 90
SYWS keyword 226, 243

T

tables, SQL
declarations 220, 238

User’s Guide

teleprocessing functions, Online Express 83
customizing 103
execution methods, specifying 92
specifying 87
TERMINATE Report Writer statement 256,
271
terminating programs
see exiting programs, function in Online
Express
text fields
creating 48
time field edits
accessing 62
TITLE command, Screen Painter
effect in scenario prototype 66
TP-USERAREA
CICS 221
DDS 221
IMS DC 221
ISPF Dialog 221
TP-USER-LEN 221
trace facility
SCBTRACE 177
trancodes
literal values, specifying 79
transaction ID, specifying 77
transferring to other programs, function in
Online Express 83
specifying 90
Ty(pe) field, Application Painter 20
TYPE Report Writer clause 265, 272

U

Union calls, SQL 132
Union Columns Cross Reference screen 135
Union Summary Menu 133
unprotected fields
character screens 77
Update function, Online Express 83
specifying 88

updating database records, function in On-
line Express 83
specifying 88
UPON Report Writer clause 269
USE BEFORE REPORTING Report Writer state-
ment 255
User help
application modules 203
display program 191
programs 204
types of 192
User help database
defining help databases 192
User Help Facility 14
user help, creating
for character programs, source files, edit-
ing 210
user-defined field edits
creating 62

\"

VALIDATE command, Program Painter 227,
244
value ranges, field edits 62
VALUE Report Writer clause 254
value, screen field, initial 55
VSAM
copylibs, importing 35
database calls 141
files, importing 35
keys, qualifying on 143, 162
loop calls 142, 145
specifying as target 18
subschemas, importing 31, 35
VSAM File Importer screen 35

31

W

Working-Storage Section
defining in Program Painter 214, 218,
230, 236
invoking macros in 226, 242
Working-Storage Section keyword 263
WRITE ROUTINE Report Writer clause 272
WS keyword 263

X

XCTL function, Online Express 83
specifying 90

User’s Guide

312

User’s Guide

	User's Guide
	Table of Contents
	1 Introduction
	Introduction to APS
	A Scenario for Using APS
	The APS Tool Set

	2 Paint the Application Definition
	Application Painter Concepts
	Painting an Application Definition
	Special Considerations

	Defining Application Components

	3 Import Database Definitions
	Importer Concepts
	Importing IMS PSBs and DBDs
	Supplementing or Overriding DDI Statements

	Importing SQL DB2 Objects
	Generating a DB2/DBP Object Import Report
	Special Considerations

	Importing VSAM Files
	Importing IDMS Database Definitions

	4 Paint Character Screens
	Screen Painter Concepts
	Field Attributes
	Field Edits
	Global Data Elements
	Scenario Prototype
	Target-Specific Parameters

	Painting a Screen
	Special Considerations

	Painting Field Edits
	Creating and Running a Screen Flow Prototype
	Modifying Screen Layouts
	Delete a Field or Row
	Modify a Repeated Record Block
	Move or Copy a Field or Row
	Track Multiple Field Changes

	Setting Parameters for Generation
	Importing BMS Mapsets

	5 Define Processing Logic
	Concepts of Processing Logic
	Predefined Program Functions
	Specifying Predefined Program Functions
	Special Considerations

	Custom Program Functions
	Defining Custom Program Functions

	Mapping Screens to Database Fields
	Special Considerations

	Control Points
	Inserting Logic at Control Points

	6 Define Database Access
	Concepts of APS Database Access
	Defining SQL Database Calls
	Defining Basic SQL Calls
	Defining Join Calls
	Defining Union Calls
	Special Considerations

	Defining IMS Database Calls
	Special Considerations

	Defining VSAM Database Calls
	Special Considerations

	Defining IDMS Database Calls
	Special Considerations
	Connecting and Disconnecting Records

	Customized Database Calls
	Nested Loops
	Functions with Multiple Database Actions
	Custom Logic at Database Call Control Points
	Status Codes and Error Messages
	Multiple-Field Key Qualification
	Database Calls as Custom Program Functions

	Savekey and Commarea Storage
	Defining Savekey Storage and a Commarea
	Special Considerations

	7 Generate the Application
	Concepts of Generation
	Setting Options
	Setting Project and Group Options
	Setting Generator Options
	Setting Precompiler Options
	Setting SQL Bind and Translate Options
	Setting Job Control Cards
	Setting IDMS Options
	Resetting Profile Variables

	Generating Applications
	Special Considerations

	Executing Applications
	Access the execution facilities

	8 Create User Help
	User Help Facility Concepts
	Defining the Help Database
	Defining an IMS Help Database
	Defining a VSAM Help Database
	Defining SQL Help Databases
	Special Considerations

	Working with the Help Source File
	Creating the Help Source File
	Special Consideration

	Generating the User Help Application
	Generating User Help in CICS/ISPF Environments
	Generating User Help in an IMS Environment
	Special Considerations

	Loading the Help Database
	Loading Help Source for VSAM
	Loading Help Source for IMS
	Special Considerations

	Customizing the User Help Application
	Maintaining the Help Database

	9 Define Online Programs with Program Painter
	Concepts of the Program Painter
	Creating Online Programs in the Program Painter
	Special Considerations

	10 Create Batch Programs
	Concepts of APS Batch Programming
	Creating Batch Programs
	Special Consideration

	Sample Batch Program

	11 Create Reports with Report Writer
	Concepts of APS Report Writing
	Painting Report Mock-Ups
	Special Considerations

	Creating Report Programs
	Special Considerations

	Generate Multiple SUM or SOURCE Statements
	Suffixed Data Elements
	Array Items

	Mapping Considerations
	Sample Program

	12 Using the APS/ENDEVOR Interface
	APS/ENDEVOR Overview
	Using APS/ENDEVOR
	Accessing APS/ENDEVOR Options
	Specifying a Project and Group
	Checking a Component In
	Checking a Revision Out
	Running the View Differences Report
	Running the View Print Reports

	Index

